2.2 Übungen

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Robot: Automated text replacement (-Answer +Antwort))
K (Robot: Automated text replacement (-Solution +Lösung))
Zeile 21: Zeile 21:
|| <math>5x+7=2x-6</math>
|| <math>5x+7=2x-6</math>
|}
|}
-
</div>{{#NAVCONTENT:Antwort|Antwort 2.2:1|Solution a|Solution 2.2:1a|Solution b|Solution 2.2:1b|Solution c|Solution 2.2:1c|Solution d|Solution 2.2:1d}}
+
</div>{{#NAVCONTENT:Antwort|Antwort 2.2:1|Lösung a|Lösung 2.2:1a|Lösung b|Lösung 2.2:1b|Lösung c|Lösung 2.2:1c|Lösung d|Lösung 2.2:1d}}
===Übung 2.2:2===
===Übung 2.2:2===
Zeile 37: Zeile 37:
|| <math>(x^2+4x+1)^2+3x^4-2x^2=(2x^2+2x+3)^2</math>
|| <math>(x^2+4x+1)^2+3x^4-2x^2=(2x^2+2x+3)^2</math>
|}
|}
-
</div>{{#NAVCONTENT:Antwort|Antwort 2.2:2|Solution a|Solution 2.2:2a|Solution b|Solution 2.2:2b|Solution c|Solution 2.2:2c|Solution d|Solution 2.2:2d}}
+
</div>{{#NAVCONTENT:Antwort|Antwort 2.2:2|Lösung a|Lösung 2.2:2a|Lösung b|Lösung 2.2:2b|Lösung c|Lösung 2.2:2c|Lösung d|Lösung 2.2:2d}}
===Übung 2.2:3===
===Übung 2.2:3===
Zeile 55: Zeile 55:
|| <math>\left(\displaystyle\frac{2}{x}-3\right)\left(\displaystyle\frac{1}{4x}+\frac{1}{2}\right)-\left(\displaystyle\frac{1}{2x}-\frac{2}{3}\right)^2-\left(\displaystyle\frac{1}{2x}+\frac{1}{3}\right)\left(\displaystyle\frac{1}{2x}-\frac{1}{3}\right)=0</math>
|| <math>\left(\displaystyle\frac{2}{x}-3\right)\left(\displaystyle\frac{1}{4x}+\frac{1}{2}\right)-\left(\displaystyle\frac{1}{2x}-\frac{2}{3}\right)^2-\left(\displaystyle\frac{1}{2x}+\frac{1}{3}\right)\left(\displaystyle\frac{1}{2x}-\frac{1}{3}\right)=0</math>
|}
|}
-
</div>{{#NAVCONTENT:Antwort|Antwort 2.2:3|Solution a|Solution 2.2:3a|Solution b|Solution 2.2:3b|Solution c|Solution 2.2:3c|Solution d|Solution 2.2:3d}}
+
</div>{{#NAVCONTENT:Antwort|Antwort 2.2:3|Lösung a|Lösung 2.2:3a|Lösung b|Lösung 2.2:3b|Lösung c|Lösung 2.2:3c|Lösung d|Lösung 2.2:3d}}
===Übung 2.2:4===
===Übung 2.2:4===
Zeile 66: Zeile 66:
|| Write the equation for the line <math> 3x+4y-5=0</math> in the form <math>\,y=kx+m\,</math>.
|| Write the equation for the line <math> 3x+4y-5=0</math> in the form <math>\,y=kx+m\,</math>.
|}
|}
-
</div>{{#NAVCONTENT:Antwort|Antwort 2.2:4|Solution a|Solution 2.2:4a|Solution b|Solution 2.2:4b}}
+
</div>{{#NAVCONTENT:Antwort|Antwort 2.2:4|Lösung a|Lösung 2.2:4a|Lösung b|Lösung 2.2:4b}}
===Übung 2.2:5===
===Übung 2.2:5===
Zeile 86: Zeile 86:
|| Determine the slope, <math>\,k\,</math>, for the straight line that cuts the ''x''-axis at the point <math>\,(5,0)\,</math> and ''y''-axis at the point <math>\,(0,-8)\,</math>.
|| Determine the slope, <math>\,k\,</math>, for the straight line that cuts the ''x''-axis at the point <math>\,(5,0)\,</math> and ''y''-axis at the point <math>\,(0,-8)\,</math>.
|}
|}
-
</div>{{#NAVCONTENT:Antwort|Antwort 2.2:5|Solution a|Solution 2.2:5a|Solution b|Solution 2.2:5b|Solution c|Solution 2.2:5c|Solution d|Solution 2.2:5d|Solution e|Solution 2.2:5e}}
+
</div>{{#NAVCONTENT:Antwort|Antwort 2.2:5|Lösung a|Lösung 2.2:5a|Lösung b|Lösung 2.2:5b|Lösung c|Lösung 2.2:5c|Lösung d|Lösung 2.2:5d|Lösung e|Lösung 2.2:5e}}
===Übung 2.2:6===
===Übung 2.2:6===
Zeile 105: Zeile 105:
|| <math>2x+y-1=0\ </math> and <math>\ y-2x-2=0</math>
|| <math>2x+y-1=0\ </math> and <math>\ y-2x-2=0</math>
|}
|}
-
</div>{{#NAVCONTENT:Antwort|Antwort 2.2:6|Solution a|Solution 2.2:6a|Solution b|Solution 2.2:6b|Solution c|Solution 2.2:6c|Solution d|Solution 2.2:6d|Solution e|Solution 2.2:6e}}
+
</div>{{#NAVCONTENT:Antwort|Antwort 2.2:6|Lösung a|Lösung 2.2:6a|Lösung b|Lösung 2.2:6b|Lösung c|Lösung 2.2:6c|Lösung d|Lösung 2.2:6d|Lösung e|Lösung 2.2:6e}}
===Übung 2.2:7===
===Übung 2.2:7===
Zeile 118: Zeile 118:
|width="33%" | <math>f(x)=2</math>
|width="33%" | <math>f(x)=2</math>
|}
|}
-
</div>{{#NAVCONTENT:Antwort|Antwort 2.2:7|Solution a|Solution 2.2:7a|Solution b|Solution 2.2:7b|Solution c|Solution 2.2:7c}}
+
</div>{{#NAVCONTENT:Antwort|Antwort 2.2:7|Lösung a|Lösung 2.2:7a|Lösung b|Lösung 2.2:7b|Lösung c|Lösung 2.2:7c}}
===Übung 2.2:8===
===Übung 2.2:8===
Zeile 131: Zeile 131:
|width="33%" | <math>2x+3y \leq 6 </math>
|width="33%" | <math>2x+3y \leq 6 </math>
|}
|}
-
</div>{{#NAVCONTENT:Antwort|Antwort 2.2:8|Solution a|Solution 2.2:8a|Solution b|Solution 2.2:8b|Solution c|Solution 2.2:8c}}
+
</div>{{#NAVCONTENT:Antwort|Antwort 2.2:8|Lösung a|Lösung 2.2:8a|Lösung b|Lösung 2.2:8b|Lösung c|Lösung 2.2:8c}}
===Übung 2.2:9===
===Übung 2.2:9===
Zeile 146: Zeile 146:
|| is described by the inequalities <math>\ x+y \geq -2\,</math>, <math>\ 2x-y \leq 2\ </math> and <math>\ 2y-x \leq 2\,</math>.
|| is described by the inequalities <math>\ x+y \geq -2\,</math>, <math>\ 2x-y \leq 2\ </math> and <math>\ 2y-x \leq 2\,</math>.
|}
|}
-
</div>{{#NAVCONTENT:Antwort|Antwort 2.2:9|Solution a|Solution 2.2:9a|Solution b|Solution 2.2:9b|Solution c|Solution 2.2:9c}}
+
</div>{{#NAVCONTENT:Antwort|Antwort 2.2:9|Lösung a|Lösung 2.2:9a|Lösung b|Lösung 2.2:9b|Lösung c|Lösung 2.2:9c}}

Version vom 09:29, 22. Okt. 2008

 

Vorlage:Not selected tab Vorlage:Selected tab

 

Übung 2.2:1

Solve the equations

a) \displaystyle x-2=-1 b) \displaystyle 2x+1=13
c) \displaystyle \displaystyle\frac{1}{3}x-1=x d) \displaystyle 5x+7=2x-6

Übung 2.2:2

Solve the equations

a) \displaystyle \displaystyle\frac{5x}{6}-\displaystyle\frac{x+2}{9}=\displaystyle\frac{1}{2} b) \displaystyle \displaystyle\frac{8x+3}{7}-\displaystyle\frac{5x-7}{4}=2
c) \displaystyle (x+3)^2-(x-5)^2=6x+4 d) \displaystyle (x^2+4x+1)^2+3x^4-2x^2=(2x^2+2x+3)^2

Übung 2.2:3

Solve the equations

a) \displaystyle \displaystyle\frac{x+3}{x-3}-\displaystyle\frac{x+5}{x-2}=0
b) \displaystyle \displaystyle\frac{4x}{4x-7}-\displaystyle\frac{1}{2x-3}=1
c) \displaystyle \left(\displaystyle\frac{1}{x-1}-\frac{1}{x+1}\right)\left(x^2+\frac{1}{2}\right)=\displaystyle\frac{6x-1}{3x-3}
d) \displaystyle \left(\displaystyle\frac{2}{x}-3\right)\left(\displaystyle\frac{1}{4x}+\frac{1}{2}\right)-\left(\displaystyle\frac{1}{2x}-\frac{2}{3}\right)^2-\left(\displaystyle\frac{1}{2x}+\frac{1}{3}\right)\left(\displaystyle\frac{1}{2x}-\frac{1}{3}\right)=0

Übung 2.2:4

a) Write the equation for the line \displaystyle \,y=2x+3\, in the form \displaystyle \,ax+by=c\,.
b) Write the equation for the line \displaystyle 3x+4y-5=0 in the form \displaystyle \,y=kx+m\,.

Übung 2.2:5

a) Determine the equation for the straight line that goes between the points \displaystyle \,(2,3)\, and\displaystyle \,(3,0)\,.
b) Determine the equation for the straight line that has slope \displaystyle \,-3\, and goes through the point \displaystyle \,(1,-2)\,.
c) Determine the equation for the straight line that goes through the point \displaystyle \,(-1,2)\, and is parallel to the line \displaystyle \,y=3x+1\,.
d) Determine the equation for the straight line that goes through the point \displaystyle \,(2,4)\, and is perpendicular to the line \displaystyle \,y=2x+5\,.
e) Determine the slope, \displaystyle \,k\,, for the straight line that cuts the x-axis at the point \displaystyle \,(5,0)\, and y-axis at the point \displaystyle \,(0,-8)\,.

Übung 2.2:6

Find the points of intersection between the pairs of lines in the following

a) \displaystyle y=3x+5\ and the x-axis b) \displaystyle y=-x+5\ and the y-axis
c) \displaystyle 4x+5y+6=0\ and the y-axis d) \displaystyle x+y+1=0\ and \displaystyle \ x=12
e) \displaystyle 2x+y-1=0\ and \displaystyle \ y-2x-2=0

Übung 2.2:7

Sketch the graph of the functions

a) \displaystyle f(x)=3x-2 b) \displaystyle f(x)=2-x c) \displaystyle f(x)=2

Übung 2.2:8

In the xy-plane, fill in all the points whose coordinates \displaystyle \,(x,y)\, satisfy

a) \displaystyle y \geq x b) \displaystyle y < 3x -4 c) \displaystyle 2x+3y \leq 6

Übung 2.2:9

Calculate the area of the triangle which

a) has corners at the points \displaystyle \,(1,4)\,, \displaystyle \,(3,3)\, and \displaystyle \,(1,0)\,.
b) is bordered by the lines \displaystyle \ x=2y\,, \displaystyle \ y=4\ and \displaystyle \ y=10-2x\,.
c) is described by the inequalities \displaystyle \ x+y \geq -2\,, \displaystyle \ 2x-y \leq 2\ and \displaystyle \ 2y-x \leq 2\,.