4.2 Übungen

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 120: Zeile 120:
===Übung 4.2:7===
===Übung 4.2:7===
<div class="ovning">
<div class="ovning">
-
Um die Breite eines Flusses zu bestimmen, messen wir die Winkeln zu einem Fixpunkt auf dem Ufer von zwei verschiedenen Stellen. Wie breit ist der Fluss?
+
Um die Breite eines Flusses zu bestimmen, messen wir die Winkel zu einem Fixpunkt auf dem Ufer von zwei verschiedenen Stellen. Wie breit ist der Fluss?
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|
|
Zeile 129: Zeile 129:
===Übung 4.2:8===
===Übung 4.2:8===
<div class="ovning">
<div class="ovning">
-
Eine Stange mit der Länge <math>\,\ell\,</math> hängt an zwei Schnüren mit den Längen <math>\,a\,</math> und <math>\,b\,</math> wie im Bild. Die Schnüre bilden die Winkeln <math>\,\alpha\,</math> und <math>\,\beta\,</math>. Bestimmen Sie den Winkel <math>\,\gamma\,</math>.
+
Eine Stange mit der Länge <math>\,\ell\,</math> hängt an zwei Schnüren mit den Längen <math>\,a\,</math> und <math>\,b\,</math> wie im Bild. Die Schnüre bilden die Winkel <math>\,\alpha\,</math> und <math>\,\beta\,</math>. Bestimmen Sie den Winkel <math>\,\gamma\,</math>.
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|
|
Zeile 138: Zeile 138:
===Übung 4.2:9===
===Übung 4.2:9===
<div class="ovning">
<div class="ovning">
-
Eine Strasse von ''A'' nach ''B'' besteht aus den drei geraden Strecken ''AP'', ''PQ'' und ''QB'', die jeweils 4.0 km, 12.0 km und 5.0 km lang sind. Die Winkel ''P'' und ''Q'' sind jeweils 30° und 90°. Bestimmen Sie die Länge des Luftweges zwischen ''A'' und ''B''. (Diese Übung stammt von einer schwedischen Abiturprüfung im November 1976.)
+
Eine Strasse von ''A'' nach ''B'' besteht aus den drei geraden Strecken ''AP'', ''PQ'' und ''QB'', die jeweils 4.0 km, 12.0 km und 5.0 km lang sind. Die Winkel ''P'' und ''Q'' sind jeweils 30° und 90°. Bestimmen Sie die Länge des Luftweges zwischen ''A'' und ''B''. (Diese Übung stammt aus einer schwedischen Abiturprüfung im November 1976.)
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|
|

Version vom 17:27, 23. Jul. 2009

       Theorie          Übungen      

Übung 4.2:1

Verwenden Sie trigonometrische Funktionen, um die Länge der unbekannten Seite x zu bestimmen. \displaystyle \,\,

a)

[Image]

b)

[Image]

c)

[Image]

d)

[Image]

e)

[Image]

f)

[Image]

Übung 4.2:2

Finden Sie eine trigonometrische Gleichung, die den Winkel \displaystyle \,v\, enthält.

a)

[Image]

b)

[Image]

c)

[Image]

d)

[Image]

e)

[Image]

f)

[Image]

Übung 4.2:3

Berechnen Sie

a) \displaystyle \sin{\left(-\displaystyle \frac{\pi}{2}\right)} b) \displaystyle \cos{2\pi} c) \displaystyle \sin{9\pi}
d) \displaystyle \cos{\displaystyle \frac{7\pi}{2}} e) \displaystyle \sin{\displaystyle \frac{3\pi}{4}} f) \displaystyle \cos{\left(-\displaystyle \frac{\pi}{6}\right)}

Übung 4.2:4

Berechnen Sie

a) \displaystyle \cos{\displaystyle \frac{11\pi}{6}} b) \displaystyle \cos{\displaystyle \frac{11\pi}{3}} c) \displaystyle \tan{\displaystyle \frac{3\pi}{4}}
d) \displaystyle \tan{\pi} e) \displaystyle \tan{\displaystyle \frac{7\pi}{6}} f) \displaystyle \tan{\left(-\displaystyle \frac{5\pi}{3}\right)}

Übung 4.2:5

Berechnen Sie

a) \displaystyle \cos{135^\circ} b) \displaystyle \tan{225^\circ} c) \displaystyle \cos{330^\circ} d) \displaystyle \tan{495^\circ}

Übung 4.2:6

Berechnen Sie die Länge der Seite \displaystyle \,x\,.

[Image]

Übung 4.2:7

Um die Breite eines Flusses zu bestimmen, messen wir die Winkel zu einem Fixpunkt auf dem Ufer von zwei verschiedenen Stellen. Wie breit ist der Fluss?

[Image]

Übung 4.2:8

Eine Stange mit der Länge \displaystyle \,\ell\, hängt an zwei Schnüren mit den Längen \displaystyle \,a\, und \displaystyle \,b\, wie im Bild. Die Schnüre bilden die Winkel \displaystyle \,\alpha\, und \displaystyle \,\beta\,. Bestimmen Sie den Winkel \displaystyle \,\gamma\,.

[Image]

Übung 4.2:9

Eine Strasse von A nach B besteht aus den drei geraden Strecken AP, PQ und QB, die jeweils 4.0 km, 12.0 km und 5.0 km lang sind. Die Winkel P und Q sind jeweils 30° und 90°. Bestimmen Sie die Länge des Luftweges zwischen A und B. (Diese Übung stammt aus einer schwedischen Abiturprüfung im November 1976.)

[Image]