2.2 Übungen
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (Robot: Automated text replacement (-Solution +Lösung)) |
K (Robot: Automated text replacement (-Selected tab +Gewählter Tab)) |
||
Zeile 3: | Zeile 3: | ||
| style="border-bottom:1px solid #000" width="5px" | | | style="border-bottom:1px solid #000" width="5px" | | ||
{{Not selected tab|[[2.2 Lineare Gleichungen|Theorie]]}} | {{Not selected tab|[[2.2 Lineare Gleichungen|Theorie]]}} | ||
- | {{ | + | {{Gewählter Tab|[[2.2 Übungen|Übungen]]}} |
| style="border-bottom:1px solid #000" width="100%"| | | style="border-bottom:1px solid #000" width="100%"| | ||
|} | |} |
Version vom 09:35, 22. Okt. 2008
Übungen |
Übung 2.2:1
Solve the equations
a) | \displaystyle x-2=-1 | b) | \displaystyle 2x+1=13 |
c) | \displaystyle \displaystyle\frac{1}{3}x-1=x | d) | \displaystyle 5x+7=2x-6 |
Antwort
Lösung a
Lösung b
Lösung c
Lösung d
Übung 2.2:2
Solve the equations
a) | \displaystyle \displaystyle\frac{5x}{6}-\displaystyle\frac{x+2}{9}=\displaystyle\frac{1}{2} | b) | \displaystyle \displaystyle\frac{8x+3}{7}-\displaystyle\frac{5x-7}{4}=2 |
c) | \displaystyle (x+3)^2-(x-5)^2=6x+4 | d) | \displaystyle (x^2+4x+1)^2+3x^4-2x^2=(2x^2+2x+3)^2 |
Antwort
Lösung a
Lösung b
Lösung c
Lösung d
Übung 2.2:3
Solve the equations
a) | \displaystyle \displaystyle\frac{x+3}{x-3}-\displaystyle\frac{x+5}{x-2}=0 |
b) | \displaystyle \displaystyle\frac{4x}{4x-7}-\displaystyle\frac{1}{2x-3}=1 |
c) | \displaystyle \left(\displaystyle\frac{1}{x-1}-\frac{1}{x+1}\right)\left(x^2+\frac{1}{2}\right)=\displaystyle\frac{6x-1}{3x-3} |
d) | \displaystyle \left(\displaystyle\frac{2}{x}-3\right)\left(\displaystyle\frac{1}{4x}+\frac{1}{2}\right)-\left(\displaystyle\frac{1}{2x}-\frac{2}{3}\right)^2-\left(\displaystyle\frac{1}{2x}+\frac{1}{3}\right)\left(\displaystyle\frac{1}{2x}-\frac{1}{3}\right)=0 |
Antwort
Lösung a
Lösung b
Lösung c
Lösung d
Übung 2.2:4
a) | Write the equation for the line \displaystyle \,y=2x+3\, in the form \displaystyle \,ax+by=c\,. |
b) | Write the equation for the line \displaystyle 3x+4y-5=0 in the form \displaystyle \,y=kx+m\,. |
Übung 2.2:5
a) | Determine the equation for the straight line that goes between the points \displaystyle \,(2,3)\, and\displaystyle \,(3,0)\,. |
b) | Determine the equation for the straight line that has slope \displaystyle \,-3\, and goes through the point \displaystyle \,(1,-2)\,. |
c) | Determine the equation for the straight line that goes through the point \displaystyle \,(-1,2)\, and is parallel to the line \displaystyle \,y=3x+1\,. |
d) | Determine the equation for the straight line that goes through the point \displaystyle \,(2,4)\, and is perpendicular to the line \displaystyle \,y=2x+5\,. |
e) | Determine the slope, \displaystyle \,k\,, for the straight line that cuts the x-axis at the point \displaystyle \,(5,0)\, and y-axis at the point \displaystyle \,(0,-8)\,. |
Antwort
Lösung a
Lösung b
Lösung c
Lösung d
Lösung e
Übung 2.2:6
Find the points of intersection between the pairs of lines in the following
a) | \displaystyle y=3x+5\ and the x-axis | b) | \displaystyle y=-x+5\ and the y-axis |
c) | \displaystyle 4x+5y+6=0\ and the y-axis | d) | \displaystyle x+y+1=0\ and \displaystyle \ x=12 |
e) | \displaystyle 2x+y-1=0\ and \displaystyle \ y-2x-2=0 |
Antwort
Lösung a
Lösung b
Lösung c
Lösung d
Lösung e
Übung 2.2:7
Sketch the graph of the functions
a) | \displaystyle f(x)=3x-2 | b) | \displaystyle f(x)=2-x | c) | \displaystyle f(x)=2 |
Übung 2.2:8
In the xy-plane, fill in all the points whose coordinates \displaystyle \,(x,y)\, satisfy
a) | \displaystyle y \geq x | b) | \displaystyle y < 3x -4 | c) | \displaystyle 2x+3y \leq 6 |
Übung 2.2:9
Calculate the area of the triangle which
a) | has corners at the points \displaystyle \,(1,4)\,, \displaystyle \,(3,3)\, and \displaystyle \,(1,0)\,. |
b) | is bordered by the lines \displaystyle \ x=2y\,, \displaystyle \ y=4\ and \displaystyle \ y=10-2x\,. |
c) | is described by the inequalities \displaystyle \ x+y \geq -2\,, \displaystyle \ 2x-y \leq 2\ and \displaystyle \ 2y-x \leq 2\,. |