4.4 Übungen

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Robot: Automated text replacement (-Answer +Antwort))
K (Robot: Automated text replacement (-Solution +Lösung))
Zeile 29: Zeile 29:
|width="50%" | <math>\tan{v}=-\displaystyle \frac{1}{\sqrt{3}}</math>
|width="50%" | <math>\tan{v}=-\displaystyle \frac{1}{\sqrt{3}}</math>
|}
|}
-
</div>{{#NAVCONTENT:Antwort|Antwort 4.4:1|Solution a |Solution 4.4:1a|Solution b |Solution 4.4:1b|Solution c |Solution 4.4:1c|Solution d |Solution 4.4:1d|Solution e |Solution 4.4:1e|Solution f |Solution 4.4:1f|Solution g |Solution 4.4:1g}}
+
</div>{{#NAVCONTENT:Antwort|Antwort 4.4:1|Lösung a |Lösung 4.4:1a|Lösung b |Lösung 4.4:1b|Lösung c |Lösung 4.4:1c|Lösung d |Lösung 4.4:1d|Lösung e |Lösung 4.4:1e|Lösung f |Lösung 4.4:1f|Lösung g |Lösung 4.4:1g}}
===Übung 4.4:2===
===Übung 4.4:2===
Zeile 49: Zeile 49:
|width="33%" | <math>\cos{3x}=-\displaystyle\frac{1}{\sqrt{2}}</math>
|width="33%" | <math>\cos{3x}=-\displaystyle\frac{1}{\sqrt{2}}</math>
|}
|}
-
</div>{{#NAVCONTENT:Antwort|Antwort 4.4:2|Solution a |Solution 4.4:2a|Solution b |Solution 4.4:2b|Solution c |Solution 4.4:2c|Solution d |Solution 4.4:2d|Solution e |Solution 4.4:2e|Solution f |Solution 4.4:2f}}
+
</div>{{#NAVCONTENT:Antwort|Antwort 4.4:2|Lösung a |Lösung 4.4:2a|Lösung b |Lösung 4.4:2b|Lösung c |Lösung 4.4:2c|Lösung d |Lösung 4.4:2d|Lösung e |Lösung 4.4:2e|Lösung f |Lösung 4.4:2f}}
===Übung 4.4:3===
===Übung 4.4:3===
Zeile 65: Zeile 65:
|width="50%" | <math>\sin{3x}=\sin{15^\circ}</math>
|width="50%" | <math>\sin{3x}=\sin{15^\circ}</math>
|}
|}
-
</div>{{#NAVCONTENT:Antwort|Antwort 4.4:3|Solution a |Solution 4.4:3a|Solution b |Solution 4.4:3b|Solution c |Solution 4.4:3c|Solution d |Solution 4.4:3d}}
+
</div>{{#NAVCONTENT:Antwort|Antwort 4.4:3|Lösung a |Lösung 4.4:3a|Lösung b |Lösung 4.4:3b|Lösung c |Lösung 4.4:3c|Lösung d |Lösung 4.4:3d}}
===Übung 4.4:4===
===Übung 4.4:4===
<div class="ovning">
<div class="ovning">
Determine the angles <math>\,v\,</math> in the interval <math>\,0^\circ \leq v \leq 360^\circ\,</math> which satisfy <math>\ \cos{\left(2v+10^\circ\right)}=\cos{110^\circ}\,</math>.
Determine the angles <math>\,v\,</math> in the interval <math>\,0^\circ \leq v \leq 360^\circ\,</math> which satisfy <math>\ \cos{\left(2v+10^\circ\right)}=\cos{110^\circ}\,</math>.
-
</div>{{#NAVCONTENT:Antwort|Antwort 4.4:4|Solution |Solution 4.4:4}}
+
</div>{{#NAVCONTENT:Antwort|Antwort 4.4:4|Lösung |Lösung 4.4:4}}
Zeile 85: Zeile 85:
|width="50%" | <math>\cos{5x}=\cos(x+\pi/5)</math>
|width="50%" | <math>\cos{5x}=\cos(x+\pi/5)</math>
|}
|}
-
</div>{{#NAVCONTENT:Antwort|Antwort 4.4:5|Solution a |Solution 4.4:5a|Solution b |Solution 4.4:5b|Solution c |Solution 4.4:5c}}
+
</div>{{#NAVCONTENT:Antwort|Antwort 4.4:5|Lösung a |Lösung 4.4:5a|Lösung b |Lösung 4.4:5b|Lösung c |Lösung 4.4:5c}}
===Übung 4.4:6===
===Übung 4.4:6===
Zeile 99: Zeile 99:
|width="50%" | <math>\sin 2x = -\sin x</math>
|width="50%" | <math>\sin 2x = -\sin x</math>
|}
|}
-
</div>{{#NAVCONTENT:Antwort|Antwort 4.4:6|Solution a |Solution 4.4:6a|Solution b |Solution 4.4:6b|Solution c |Solution 4.4:6c}}
+
</div>{{#NAVCONTENT:Antwort|Antwort 4.4:6|Lösung a |Lösung 4.4:6a|Lösung b |Lösung 4.4:6b|Lösung c |Lösung 4.4:6c}}
===Übung 4.4:7===
===Übung 4.4:7===
Zeile 113: Zeile 113:
|width="50%" | <math>\cos{3x}=\sin{4x}</math>
|width="50%" | <math>\cos{3x}=\sin{4x}</math>
|}
|}
-
</div>{{#NAVCONTENT:Antwort|Antwort 4.4:7|Solution a |Solution 4.4:7a|Solution b |Solution 4.4:7b|Solution c |Solution 4.4:7c}}
+
</div>{{#NAVCONTENT:Antwort|Antwort 4.4:7|Lösung a |Lösung 4.4:7a|Lösung b |Lösung 4.4:7b|Lösung c |Lösung 4.4:7c}}
===Übung 4.4:8===
===Übung 4.4:8===
Zeile 127: Zeile 127:
|width="50%" | <math>\displaystyle \frac{1}{\cos^2{x}}=1-\tan{x}</math>
|width="50%" | <math>\displaystyle \frac{1}{\cos^2{x}}=1-\tan{x}</math>
|}
|}
-
</div>{{#NAVCONTENT:Antwort|Antwort 4.4:8|Solution a |Solution 4.4:8a|Solution b |Solution 4.4:8b|Solution c |Solution 4.4:8c}}
+
</div>{{#NAVCONTENT:Antwort|Antwort 4.4:8|Lösung a |Lösung 4.4:8a|Lösung b |Lösung 4.4:8b|Lösung c |Lösung 4.4:8c}}

Version vom 09:31, 22. Okt. 2008

 

Vorlage:Not selected tab Vorlage:Selected tab

 

Übung 4.4:1

For which angles \displaystyle \,v\,, where \displaystyle \,0 \leq v\leq 2\pi\,, does

a) \displaystyle \sin{v}=\displaystyle \frac{1}{2} b) \displaystyle \cos{v}=\displaystyle \frac{1}{2}
c) \displaystyle \sin{v}=1 d) \displaystyle \tan{v}=1
e) \displaystyle \cos{v}=2 f) \displaystyle \sin{v}=-\displaystyle \frac{1}{2}
g) \displaystyle \tan{v}=-\displaystyle \frac{1}{\sqrt{3}}

Übung 4.4:2

Solve the equation

a) \displaystyle \sin{x}=\displaystyle \frac{\sqrt{3}}{2} b) \displaystyle \cos{x}=\displaystyle \frac{1}{2} c) \displaystyle \sin{x}=0
d) \displaystyle \sin{5x}=\displaystyle \frac{1}{\sqrt{2}} e) \displaystyle \sin{5x}=\displaystyle \frac{1}{2} f) \displaystyle \cos{3x}=-\displaystyle\frac{1}{\sqrt{2}}

Übung 4.4:3

Solve the equation

a) \displaystyle \cos{x}=\cos{\displaystyle \frac{\pi}{6}} b) \displaystyle \sin{x}=\sin{\displaystyle \frac{\pi}{5}}
c) \displaystyle \sin{(x+40^\circ)}=\sin{65^\circ} d) \displaystyle \sin{3x}=\sin{15^\circ}

Übung 4.4:4

Determine the angles \displaystyle \,v\, in the interval \displaystyle \,0^\circ \leq v \leq 360^\circ\, which satisfy \displaystyle \ \cos{\left(2v+10^\circ\right)}=\cos{110^\circ}\,.


Übung 4.4:5

Solve the equation

a) \displaystyle \sin{3x}=\sin{x} b) \displaystyle \tan{x}=\tan{4x}
c) \displaystyle \cos{5x}=\cos(x+\pi/5)

Übung 4.4:6

Solve the equation

a) \displaystyle \sin x\cdot \cos 3x = 2\sin x b) \displaystyle \sqrt{2}\sin{x}\cos{x}=\cos{x}
c) \displaystyle \sin 2x = -\sin x

Übung 4.4:7

Solve the equation

a) \displaystyle 2\sin^2{x}+\sin{x}=1 b) \displaystyle 2\sin^2{x}-3\cos{x}=0
c) \displaystyle \cos{3x}=\sin{4x}

Übung 4.4:8

Solve the equation

a) \displaystyle \sin{2x}=\sqrt{2}\cos{x} b) \displaystyle \sin{x}=\sqrt{3}\cos{x}
c) \displaystyle \displaystyle \frac{1}{\cos^2{x}}=1-\tan{x}