4.4 Übungen
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (Robot: Automated text replacement (-Exercises +Übungen)) |
(Added reference to the tests at the bottom of the page) |
||
(Der Versionsvergleich bezieht 11 dazwischen liegende Versionen mit ein.) | |||
Zeile 2: | Zeile 2: | ||
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | {| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | ||
| style="border-bottom:1px solid #000" width="5px" | | | style="border-bottom:1px solid #000" width="5px" | | ||
- | {{ | + | {{Nicht gewählter Tab|[[4.4 Trigonometric equations|Theorie]]}} |
- | {{ | + | {{Gewählter Tab|[[4.4 Übungen|Übungen]]}} |
| style="border-bottom:1px solid #000" width="100%"| | | style="border-bottom:1px solid #000" width="100%"| | ||
|} | |} | ||
- | === | + | ===Übung 4.4:1=== |
<div class="ovning"> | <div class="ovning"> | ||
- | + | Für welche Winkel <math>\,v\,</math> mit <math>\,0 \leq v\leq 2\pi\,</math> ist | |
{| width="100%" cellspacing="10px" | {| width="100%" cellspacing="10px" | ||
|a) | |a) | ||
Zeile 29: | Zeile 29: | ||
|width="50%" | <math>\tan{v}=-\displaystyle \frac{1}{\sqrt{3}}</math> | |width="50%" | <math>\tan{v}=-\displaystyle \frac{1}{\sqrt{3}}</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Antwort|Antwort 4.4:1|Lösung a |Lösung 4.4:1a|Lösung b |Lösung 4.4:1b|Lösung c |Lösung 4.4:1c|Lösung d |Lösung 4.4:1d|Lösung e |Lösung 4.4:1e|Lösung f |Lösung 4.4:1f|Lösung g |Lösung 4.4:1g}} |
- | === | + | ===Übung 4.4:2=== |
<div class="ovning"> | <div class="ovning"> | ||
- | + | Löse die Gleichung | |
{| width="100%" cellspacing="10px" | {| width="100%" cellspacing="10px" | ||
|a) | |a) | ||
Zeile 49: | Zeile 49: | ||
|width="33%" | <math>\cos{3x}=-\displaystyle\frac{1}{\sqrt{2}}</math> | |width="33%" | <math>\cos{3x}=-\displaystyle\frac{1}{\sqrt{2}}</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Antwort|Antwort 4.4:2|Lösung a |Lösung 4.4:2a|Lösung b |Lösung 4.4:2b|Lösung c |Lösung 4.4:2c|Lösung d |Lösung 4.4:2d|Lösung e |Lösung 4.4:2e|Lösung f |Lösung 4.4:2f}} |
- | === | + | ===Übung 4.4:3=== |
<div class="ovning"> | <div class="ovning"> | ||
- | + | Löse die Gleichung | |
{| width="100%" cellspacing="10px" | {| width="100%" cellspacing="10px" | ||
|a) | |a) | ||
Zeile 65: | Zeile 65: | ||
|width="50%" | <math>\sin{3x}=\sin{15^\circ}</math> | |width="50%" | <math>\sin{3x}=\sin{15^\circ}</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Antwort|Antwort 4.4:3|Lösung a |Lösung 4.4:3a|Lösung b |Lösung 4.4:3b|Lösung c |Lösung 4.4:3c|Lösung d |Lösung 4.4:3d}} |
- | === | + | ===Übung 4.4:4=== |
<div class="ovning"> | <div class="ovning"> | ||
- | + | Bestimme die Winkel <math>\,v\,</math> im Intervall <math>\,0^\circ \leq v \leq 360^\circ\,</math>, die die Gleichung <math>\ \cos{\left(2v+10^\circ\right)}=\cos{110^\circ}\,</math> erfüllen. | |
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Antwort|Antwort 4.4:4|Lösung |Lösung 4.4:4}} |
- | === | + | ===Übung 4.4:5=== |
<div class="ovning"> | <div class="ovning"> | ||
- | + | Löse die Gleichung | |
{| width="100%" cellspacing="10px" | {| width="100%" cellspacing="10px" | ||
|a) | |a) | ||
Zeile 85: | Zeile 85: | ||
|width="50%" | <math>\cos{5x}=\cos(x+\pi/5)</math> | |width="50%" | <math>\cos{5x}=\cos(x+\pi/5)</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Antwort|Antwort 4.4:5|Lösung a |Lösung 4.4:5a|Lösung b |Lösung 4.4:5b|Lösung c |Lösung 4.4:5c}} |
- | === | + | ===Übung 4.4:6=== |
<div class="ovning"> | <div class="ovning"> | ||
- | + | Löse die Gleichung | |
{| width="100%" cellspacing="10px" | {| width="100%" cellspacing="10px" | ||
|a) | |a) | ||
Zeile 99: | Zeile 99: | ||
|width="50%" | <math>\sin 2x = -\sin x</math> | |width="50%" | <math>\sin 2x = -\sin x</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Antwort|Antwort 4.4:6|Lösung a |Lösung 4.4:6a|Lösung b |Lösung 4.4:6b|Lösung c |Lösung 4.4:6c}} |
- | === | + | ===Übung 4.4:7=== |
<div class="ovning"> | <div class="ovning"> | ||
- | + | Löse die Gleichung | |
{| width="100%" cellspacing="10px" | {| width="100%" cellspacing="10px" | ||
|a) | |a) | ||
Zeile 113: | Zeile 113: | ||
|width="50%" | <math>\cos{3x}=\sin{4x}</math> | |width="50%" | <math>\cos{3x}=\sin{4x}</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Antwort|Antwort 4.4:7|Lösung a |Lösung 4.4:7a|Lösung b |Lösung 4.4:7b|Lösung c |Lösung 4.4:7c}} |
- | === | + | ===Übung 4.4:8=== |
<div class="ovning"> | <div class="ovning"> | ||
- | + | Löse die Gleichung | |
{| width="100%" cellspacing="10px" | {| width="100%" cellspacing="10px" | ||
|a) | |a) | ||
Zeile 127: | Zeile 127: | ||
|width="50%" | <math>\displaystyle \frac{1}{\cos^2{x}}=1-\tan{x}</math> | |width="50%" | <math>\displaystyle \frac{1}{\cos^2{x}}=1-\tan{x}</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Antwort|Antwort 4.4:8|Lösung a |Lösung 4.4:8a|Lösung b |Lösung 4.4:8b|Lösung c |Lösung 4.4:8c}} |
+ | |||
+ | |||
+ | '''Diagnostische Prüfung und Schlussprüfung''' | ||
+ | |||
+ | Nachdem Du mit der Theorie und den Übungen fertig bist, sollst Du die diagnostische Prüfung und die Schlussprüfung machen. Du findest den Link zu den Prüfungen in Deiner Student Lounge. |
Aktuelle Version
Theorie | Übungen |
Übung 4.4:1
Für welche Winkel \displaystyle \,v\, mit \displaystyle \,0 \leq v\leq 2\pi\, ist
a) | \displaystyle \sin{v}=\displaystyle \frac{1}{2} | b) | \displaystyle \cos{v}=\displaystyle \frac{1}{2} |
c) | \displaystyle \sin{v}=1 | d) | \displaystyle \tan{v}=1 |
e) | \displaystyle \cos{v}=2 | f) | \displaystyle \sin{v}=-\displaystyle \frac{1}{2} |
g) | \displaystyle \tan{v}=-\displaystyle \frac{1}{\sqrt{3}} |
Antwort
Lösung a
Lösung b
Lösung c
Lösung d
Lösung e
Lösung f
Lösung g
Übung 4.4:2
Löse die Gleichung
a) | \displaystyle \sin{x}=\displaystyle \frac{\sqrt{3}}{2} | b) | \displaystyle \cos{x}=\displaystyle \frac{1}{2} | c) | \displaystyle \sin{x}=0 |
d) | \displaystyle \sin{5x}=\displaystyle \frac{1}{\sqrt{2}} | e) | \displaystyle \sin{5x}=\displaystyle \frac{1}{2} | f) | \displaystyle \cos{3x}=-\displaystyle\frac{1}{\sqrt{2}} |
Antwort
Lösung a
Lösung b
Lösung c
Lösung d
Lösung e
Lösung f
Übung 4.4:3
Löse die Gleichung
a) | \displaystyle \cos{x}=\cos{\displaystyle \frac{\pi}{6}} | b) | \displaystyle \sin{x}=\sin{\displaystyle \frac{\pi}{5}} |
c) | \displaystyle \sin{(x+40^\circ)}=\sin{65^\circ} | d) | \displaystyle \sin{3x}=\sin{15^\circ} |
Antwort
Lösung a
Lösung b
Lösung c
Lösung d
Übung 4.4:4
Bestimme die Winkel \displaystyle \,v\, im Intervall \displaystyle \,0^\circ \leq v \leq 360^\circ\,, die die Gleichung \displaystyle \ \cos{\left(2v+10^\circ\right)}=\cos{110^\circ}\, erfüllen.
Antwort
Lösung
Übung 4.4:5
Löse die Gleichung
a) | \displaystyle \sin{3x}=\sin{x} | b) | \displaystyle \tan{x}=\tan{4x} |
c) | \displaystyle \cos{5x}=\cos(x+\pi/5) |
Übung 4.4:6
Löse die Gleichung
a) | \displaystyle \sin x\cdot \cos 3x = 2\sin x | b) | \displaystyle \sqrt{2}\sin{x}\cos{x}=\cos{x} |
c) | \displaystyle \sin 2x = -\sin x |
Übung 4.4:7
Löse die Gleichung
a) | \displaystyle 2\sin^2{x}+\sin{x}=1 | b) | \displaystyle 2\sin^2{x}-3\cos{x}=0 |
c) | \displaystyle \cos{3x}=\sin{4x} |
Übung 4.4:8
Löse die Gleichung
a) | \displaystyle \sin{2x}=\sqrt{2}\cos{x} | b) | \displaystyle \sin{x}=\sqrt{3}\cos{x} |
c) | \displaystyle \displaystyle \frac{1}{\cos^2{x}}=1-\tan{x} |
Diagnostische Prüfung und Schlussprüfung
Nachdem Du mit der Theorie und den Übungen fertig bist, sollst Du die diagnostische Prüfung und die Schlussprüfung machen. Du findest den Link zu den Prüfungen in Deiner Student Lounge.