Förberedande kurs i matematik 1
Övning 4.3:1
Svar 4.3:1
Hämtar...
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Övning 4.3:2
Svar 4.3:2
Hämtar...
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Övning 4.3:3
Svar 4.3:3
Hämtar...
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Övning 4.3:4
Antag att \displaystyle \,0 \leq v \leq \pi\, och att \displaystyle \,\cos{v}=b\,. Uttryck med hjälp av \displaystyle \,b
a)
| \displaystyle \sin^2{v}
| b)
| \displaystyle \sin{v}
|
c)
| \displaystyle \sin{2v}
| d)
| \displaystyle \cos{2v}
|
e)
| \displaystyle \sin{\left( v+\displaystyle \frac{\pi}{4} \right)}
| f)
| \displaystyle \cos{\left( v-\displaystyle \frac{\pi}{3} \right)}
|
Svar 4.3:4
Hämtar...
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Övning 4.3:5
För en spetsig vinkel \displaystyle \,v\, i en triangel gäller att \displaystyle \,\sin{v}=\displaystyle \frac{5}{7}\,. Bestäm \displaystyle \,\cos{v}\, och \displaystyle \,\tan{v}\,.
Svar 4.3:5
Hämtar...
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Övning 4.3:6
a)
| Bestäm \displaystyle \ \sin{v}\ och \displaystyle \ \tan{v}\ om \displaystyle \ \cos{v}=\displaystyle \frac{3}{4}\ och \displaystyle \ \displaystyle \frac{3\pi}{2} \leq v \leq 2\pi\,.
|
b)
| Bestäm \displaystyle \ \cos{v}\ och \displaystyle \ \tan{v}\ om \displaystyle \ \sin{v}=\displaystyle \frac{3}{10}\ och \displaystyle \,v\, ligger i den andra kvadranten.
|
c)
| Bestäm \displaystyle \ \sin{v}\ och \displaystyle \ \cos{v}\ om \displaystyle \ \tan{v}=3\ och \displaystyle \ \pi \leq v \leq \displaystyle \frac{3\pi}{2}\,.
|
Svar 4.3:6
Hämtar...
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Övning 4.3:7
Bestäm \displaystyle \ \sin{(x+y)}\ om
a)
| \displaystyle \sin{x}=\displaystyle \frac{2}{3}\,,\displaystyle \ \sin{y}=\displaystyle \frac{1}{3}\ och \displaystyle \,x\, \,y\, är vinklar i första kvadranten.
|
b)
| \displaystyle \cos{x}=\displaystyle \frac{2}{5}\,, \displaystyle \ \cos{y}=\displaystyle \frac{3}{5}\ och \displaystyle \,x\,, \displaystyle \,y\, är vinklar i första kvadranten.
|
Svar 4.3:7
Hämtar...
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Övning 4.3:8
Visa följande trigonometriska samband
a)
| \displaystyle \tan^2v=\displaystyle\frac{\sin^2v}{1-\sin^2v}
|
b)
| \displaystyle \displaystyle \frac{1}{\cos v}-\tan v=\frac{\cos v}{1+\sin v}
|
c)
| \displaystyle \tan\displaystyle\frac{u}{2}=\frac{\sin u}{1+\cos u}
|
d)
| \displaystyle \displaystyle\frac{\cos (u+v)}{\cos u \cos v}= 1- \tan u \tan v
|
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Övning 4.3:9
| Visa "Feynmans likhet"
|
| \displaystyle \cos 20^\circ \cdot \cos 40^\circ \cdot \cos 80^\circ = \displaystyle\frac{1}{8}\,\mbox{.}
|
| (Ledtråd: Använd formeln för dubbla vinkeln på \displaystyle \,\sin 160^\circ\,.)
|
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt