5.1 Övningar
Förberedande kurs i matematik 1
| Teori | Övningar | 
Exercise 5.1:1
Skriv följande formler i LaTex.
| a) | \displaystyle 2-3+4 | b) | \displaystyle -1+0.3 | 
| c) | \displaystyle -5-(-3)=-5+3 | d) | \displaystyle 5/2+1 > 5/(2+1) | 
Svar
Exercise 5.1:2
Skriv följande formler i LaTex.
| a) | \displaystyle 3\cdot 4\pm 4 | b) | \displaystyle 4x^2-\sqrt{x} | 
| c) | \displaystyle 4\cdot 3^n\ge n^3 | d) | \displaystyle 3-(5-2)=-(-3+5-2) | 
Svar
Exercise 5.1:3
Skriv följande formler i LaTex.
| a) | \displaystyle \dfrac{x+1}{x^2-1} = \dfrac{1}{x-1} | b) | \displaystyle \left(\dfrac{5}{x}-1\right)(1-x) | 
| c) | \displaystyle \dfrac{\frac{1}{2}}{\frac{1}{3}+\frac{1}{4}} | d) | \displaystyle \dfrac{1}{1+\dfrac{1}{1+x}} | 
Svar
Exercise 5.1:4
Skriv följande formler i LaTex.
| a) | \displaystyle \sin^2 x+\cos x | b) | \displaystyle \cos v=\cos\dfrac{3\pi}{2} | 
| c) | \displaystyle \cot 2x=\dfrac{1}{\tan 2x} | d) | \displaystyle \tan\dfrac{u}{2}=\dfrac{\sin u}{1+\cos u} | 
Svar
Exercise 5.1:5
Skriv följande formler i LaTex.
| a) | \displaystyle \sqrt{4+x^2} | b) | \displaystyle \sqrt[n]{x+y}\ne\sqrt[n]{x}+\sqrt[n]{y} | 
| c) | \displaystyle \sqrt{\sqrt{3}} = \sqrt[4]{3} | d) | \displaystyle \left(\sqrt[4]{3}\right)^3\sqrt[3]{2+\sqrt{2}} | 
Svar
Exercise 5.1:6
Skriv följande formler i LaTex.
| a) | \displaystyle \ln(4\cdot 3)=\ln 4+\ln 3 | b) | \displaystyle \ln(4-3)\ne \ln 4-\ln 3 | 
| c) | \displaystyle \log_{2}4 = \dfrac{\ln 4}{\ln 2} | d) | \displaystyle 2^{\log_{2}4} = 4 | 
Svar
Exercise 5.1:7
Rätta följande LaTeX matematik kod
| a) | 4^{\frac{3}{4}}(1-(3-4) | 
| b) | 2*sqrt(a+b) | 
| c) | cotx = \dfrac{1}{2}Sin 20^{o} | 
Svar
 
		   Hämtar...
  Hämtar...