Svar 5.1:4
Förberedande kurs i matematik 1
(Skillnad mellan versioner)
			  			                                                      
		          
			|  (Ny sida: {| width="100%" cellspacing="10px" |a) |width="100%" | \sin^2 x+\cos x |- |b) |width="100%" | \cos v=\cos\dfrac{3\pi}{2} |- |c) |width="100%" | \cot 2x=\dfrac{1}{\tan 2x} |- |d) |width="100...) |  (\dfrac --> \displaystyle\frac) | ||
| Rad 4: | Rad 4: | ||
| |- | |- | ||
| |b) | |b) | ||
| - | |width="100%" | \cos v=\cos\ | + | |width="100%" | \cos v=\cos\displaystyle\frac{3\pi}{2} | 
| |- | |- | ||
| |c) | |c) | ||
| - | |width="100%" | \cot 2x=\ | + | |width="100%" | \cot 2x=\displaystyle\frac{1}{\tan 2x} | 
| |- | |- | ||
| |d) | |d) | ||
| - | |width="100%" | \tan\ | + | |width="100%" | \tan\displaystyle\frac{u}{2}=\displaystyle\frac{\sin u}{1+\cos u} | 
| |} | |} | ||
Nuvarande version
| a) | \sin^2 x+\cos x | 
| b) | \cos v=\cos\displaystyle\frac{3\pi}{2} | 
| c) | \cot 2x=\displaystyle\frac{1}{\tan 2x} | 
| d) | \tan\displaystyle\frac{u}{2}=\displaystyle\frac{\sin u}{1+\cos u} | 
 
		  