Svar 5.1:6
Förberedande kurs i matematik 1
(Skillnad mellan versioner)
			  			                                                      
		          
			|  (Ny sida: {| width="100%" cellspacing="10px" |a) |width="100%" | \ln(4\times 3)=\ln 4+\ln 3 |- |b) |width="100%" | \ln(4-3)\ne \ln 4-\ln 3 |- |c) |width="100%" | \log_{2}4 = \dfrac{\ln 4}{\ln 2} |- |...) |  (\dfrac --> \displaystyle\frac) | ||
| (En mellanliggande version visas inte.) | |||
| Rad 1: | Rad 1: | ||
| {| width="100%" cellspacing="10px" | {| width="100%" cellspacing="10px" | ||
| |a) | |a) | ||
| - | |width="100%" | \ln(4\ | + | |width="100%" | \ln(4\cdot 3)=\ln 4+\ln 3 | 
| |- | |- | ||
| |b) | |b) | ||
| Rad 7: | Rad 7: | ||
| |- | |- | ||
| |c) | |c) | ||
| - | |width="100%" | \log_{2}4 = \ | + | |width="100%" | \log_{2}4 = \displaystyle\frac{\ln 4}{\ln 2} | 
| |- | |- | ||
| |d) | |d) | ||
| |width="100%" | 2^{\log_{2}4} = 4 | |width="100%" | 2^{\log_{2}4} = 4 | ||
| |} | |} | ||
Nuvarande version
| a) | \ln(4\cdot 3)=\ln 4+\ln 3 | 
| b) | \ln(4-3)\ne \ln 4-\ln 3 | 
| c) | \log_{2}4 = \displaystyle\frac{\ln 4}{\ln 2} | 
| d) | 2^{\log_{2}4} = 4 | 
 
		  