Tips och lösning till övning 17.30
SamverkanLinalgLIU
Tips 1
Skriv ekvationen på matrisform och sätt \displaystyle X=TY
Tips 2
\displaystyle \begin{align} 0&=x_1+7x_2=(1\quad 7)\begin{pmatrix}{x_1}\\{x_2}\end{pmatrix}=(1\quad 7)X=(1\quad 7)TY\\&=(1\quad7)\begin{pmatrix}2&1\\3&2\end{pmatrix}\begin{pmatrix}{y_1}\\{y_2}\end{pmatrix}=9y_1+17y_2.\end{align}
\displaystyle \begin{align}0&=x_1+7x_2=(1\quad7)\begin{pmatrix}{x_1}\\{x_2}\end{pmatrix}=(1\quad7)X
Tips 3
Lösning
Det gäller att
(x_1\ x_2)\begin{pmatrix}1\\7\end{pmatrix}&=X^t\begin{pmatrix}1\\7\end{pmatrix}=(TY)^t\begin{pmatrix}1\\7\end{pmatrix}\\
&=Y^tT^t\begin{pmatrix}1\\7\end{pmatrix}=(y_1\ y_2)\begin{pmatrix}2&1\\3&2\end{pmatrix}\begin{pmatrix}1\\7\end{pmatrix}=9y_1+17y_2.\end{align}
Därmed är
0&=x_1+7x_2=(1\quad 7)\begin{pmatrix}{x_1}\\{x_2}\end{pmatrix}=(1\quad 7)X=(1\quad 7)TY\\
&=(1\quad 7)\begin{pmatrix}2&1\\3&2\end{pmatrix}\begin{pmatrix}{y_1}\\{y_2}\end{pmatrix}=9y_1+17y_2.\end{align}
Alltså har linjen ekvationen \displaystyle 9y_1+17y_2=0 i den nya basen.