16.1 Definition av linjär avbildning
SamverkanLinalgLIU
Läs textavsnittet om definition av linjär avbildning Bild:Kap16 1.pdf
Du har nu läst definitionen på linjär avbildning och här kommer några övningar som testar om du har tagit till dig stoffet.
Övningar
1. Låt \displaystyle \boldsymbol{a} vara en fix vektor i rummet. Vilka av följande avbildningar på rummet är linjära?
2. Låt \displaystyle \{\boldsymbol{e}_1, \boldsymbol{e}_2\} vara en bas i \displaystyle {\bf R}^2. Avgör vilka av följande avbildningar är linjära.
- \displaystyle F_1(\boldsymbol{e}_1x_1+\boldsymbol{e}_2x_2)=x_2^2\boldsymbol{e}_1+x_2\boldsymbol{e}_2
- \displaystyle F_2(\underline{\boldsymbol{e}}X)=\underline{\boldsymbol{e}}\left(\begin{array}{c}{x_1+x_2}\\{x_1}\end{array}\right)
- \displaystyle F_3(\underline{\boldsymbol{e}}X)=\underline{\boldsymbol{e}}\left(\begin{array}{c}{x_1}\\{1}\end{array}\right)
3. Låt \displaystyle G vara en avbildning på rummet, som i basen \displaystyle \underline{\boldsymbol{e}} = \{\boldsymbol{e}_1, \boldsymbol{e}_2, \boldsymbol{e}_3\} ges av
Undersök om \displaystyle G är linjär.
4. Låt \displaystyle F vara en avbildning på rummet, som i basen \displaystyle \underline{\boldsymbol{e}} = \{\boldsymbol{e}_1, \boldsymbol{e}_2, \boldsymbol{e}_3\} ges av
Undersök om \displaystyle F är linjär. Skriv avbildningen som en matrisprodukt, \displaystyle Y=AX, där \displaystyle A inte beror på \displaystyle X. Bestäm också basvektorernas bilder och visa hur dessa kan avläsas ur \displaystyle A.