Lösning till övning 1
SamverkanLinalgLIU
a) 1. Vi visar först att \displaystyle F är additiv. Av egenskaperna för skalärprodukt följer att
2. Vi visar nu att \displaystyle F är homogen:
Alltså \displaystyle F är både additiv och homogen och därmed linjär.
b) Av räknelagarna för skalärprodukt följer att \displaystyle F är linjär: \displaystyle \begin{align} F(\boldsymbol{u}_1+\boldsymbol{u}_2)&=((\boldsymbol{u}_1+\boldsymbol{u}_2)|\boldsymbol{a})\boldsymbol{a}=((\boldsymbol{u}_1|\boldsymbol{a})+(\boldsymbol{u}_2|\boldsymbol{a}))\boldsymbol{a}\\ &=(\boldsymbol{u}_1|\boldsymbol{a})\boldsymbol{a}+(\boldsymbol{u}_2|\boldsymbol{a}))\boldsymbol{a}=F(\boldsymbol{u}_1)+F(\boldsymbol{u}_2) \end{align}
och