16. Linjära avbildningar

SamverkanLinalgLIU

Version från den 28 juni 2008 kl. 10.31; Geoba (Diskussion | bidrag)
Hoppa till: navigering, sök

Innehåll

Definition av linjär avbildning

Läs textavsnittet om definition av linjär avbildning Bild:Kap16 1.pdf

Du har nu läst definitionen på linjär avbildning och här kommer några övningar som testar om du har tagit till dig stoffet.

Övningar

1. Låt \displaystyle \{\boldsymbol{e}_1, \boldsymbol{e}_2\} vara en bas i \displaystyle {\bf R}^2. Avgör vilka av följande avbildningar är linjära.

  • \displaystyle F_1(\boldsymbol{e}_1x_1+\boldsymbol{e}_2x_2)=x_2^2\boldsymbol{e}_1+x_2\boldsymbol{e}_2
  • \displaystyle F_2(\underline{\boldsymbol{e}}X)=\underline{\boldsymbol{e}}\left(\begin{array}{c}{x_1+x_2}\\{x_1}\end{array}\right)
  • \displaystyle F_3(\underline{\boldsymbol{e}}X)=\underline{\boldsymbol{e}}\left(\begin{array}{c}{x_1}\\{1}\end{array}\right)

2. Låt \displaystyle F och \displaystyle G vara avbildningar på rummet, som i basen \displaystyle \underline{\boldsymbol{e}} = \{\boldsymbol{e}_1, \boldsymbol{e}_2, \boldsymbol{e}_3\} ges av

\displaystyle F(\underline{\boldsymbol{e}}X) = \underline{\boldsymbol{e}}Y = \underline{\boldsymbol{e}}\begin{pmatrix}x_1-x_2\\ 2x_2+3x_3\\ 2x_1-x_3\end{pmatrix},\qquad G(\underline{\boldsymbol{e}}X) = \underline{\boldsymbol{e}}\begin{pmatrix}x_1x_2\\ x_2^2\\ x_2+x_3\end{pmatrix}\,\mbox{.}

Undersök om \displaystyle F är linjär. Skriv avbildningen som en matrisprodukt, \displaystyle Y=AX, där \displaystyle A inte beror på \displaystyle X. Bestäm också basvektorernas bilder och visa hur dessa kan avläsas ur \displaystyle A. Undersök om \displaystyle G är linjär.

3. Låt \displaystyle \boldsymbol{a} vara en fix vektor i rummet. Vilka av följande avbildningar på rummet är linjära?

\displaystyle {\rm a)}\ F(\boldsymbol{u})=(\boldsymbol{u}|\boldsymbol{a})\boldsymbol{a}\qquad{\rm b)}\ F(\boldsymbol{u})=\boldsymbol{u}\times\boldsymbol{a}\qquad {\rm c)}\ F(\boldsymbol{u})=(\boldsymbol{u}|\boldsymbol{a})\boldsymbol{u}.



Matrisframställning

Läs textavsnittet om definition av matrisframställning för en linjär avbildning Bild:Kap16 2.pdf

Övningar


1. Låt \displaystyle \{\boldsymbol{e}_1, \boldsymbol{e}_2\} vara en bas i \displaystyle {\bf R}^2. Bestäm matrisen för den linjära avbildningen \displaystyle F:{\bf R}^2\rightarrow:{\bf R}^2, sådan att

\displaystyle F(3\boldsymbol{e}_1+4\boldsymbol{e}_2)=5\boldsymbol{e}_1+6\boldsymbol{e}_2,\qquad F(2\boldsymbol{e}_1+3\boldsymbol{e}_2)=7\boldsymbol{e}_1+8\boldsymbol{e}_2


2. Bestäm matrisen till den linjära avbildningen \displaystyle F:{\bf R^3}\rightarrow{\bf R}^3 som i basen \displaystyle \underline{\boldsymbol{e}}=\{\boldsymbol{e}_1, \boldsymbol{e}_2,\boldsymbol{e}_3\} definieras genom

\displaystyle F(\boldsymbol{e}_1+\boldsymbol{e}_2)=2\boldsymbol{e}_1+\boldsymbol{e}_2,\qquad F(\boldsymbol{e}_2)=-\boldsymbol{e}_1+2\boldsymbol{e}_2+\boldsymbol{e}_3,\qquad F(\boldsymbol{e}_2+\boldsymbol{e}_3)=2\boldsymbol{e}_1+\boldsymbol{e}_2+5\boldsymbol{e}_3.


3. Den linjära avbildningen \displaystyle F:{\bf R^3}\rightarrow{\bf R}^3 har i basen \displaystyle \underline{\boldsymbol{e}}=\{\boldsymbol{e}_1, \boldsymbol{e}_2,\boldsymbol{e}_3\} matrisen

\displaystyle A=\left(\begin{array}{rrr}0&1&2\\5&-1&0\\4&0&-2\end{array}\right)

Bestäm bilden \displaystyle \boldsymbol{u}=\underline{\boldsymbol{e}}\left(\begin{array}{r} 2\\-1 \\ 3\end{array}\right) under \displaystyle F. Ange urbilden till \displaystyle \boldsymbol{v}=2\boldsymbol{e}_1+5\boldsymbol{e}_2+2\boldsymbol{e}_3 under \displaystyle F.


4. Bestäm matrisen till den linjära avbildningen \displaystyle {\color{Blue}F}:{\bf R^3}\rightarrow{\bf R}^3 som i basen \displaystyle \underline{\boldsymbol{e}} ges av

\displaystyle F(x_1,x_2,x_3)=(5x_1+2x_2+4x_3,2x_1+x_2+x_3,4x_1+x_2+6x_3)
  1. Visa att \displaystyle F är linjär.
  2. Bestäm \displaystyle F^{-1}:s matris i basen \displaystyle \underline{\boldsymbol{e}}


5. Låt \displaystyle \underline{\boldsymbol{e}} vara en bas för \displaystyle V$, där dim V=2. Ange matrisen för den linjära avbildning, \displaystyle F, som byter plats på \displaystyle \boldsymbol{e}_1+2\boldsymbol{e}_2 och \displaystyle 2\boldsymbol{e}_1+\boldsymbol{e}_2. Bestäm sedan vektorer \displaystyle \boldsymbol{f}_1, \displaystyle \boldsymbol{f}_2 sådan att \displaystyle F(\boldsymbol{f}_1)=\boldsymbol{f}_1 och \displaystyle F(\boldsymbol{f}_2)=-\boldsymbol{f}_2. Välj \displaystyle \underline{\boldsymbol{f}}=\{\boldsymbol{e}_1,\boldsymbol{f}_2\} som bas. Ange \displaystyle F:s matris i denna bas.


6. Låt \displaystyle \underline{\boldsymbol{e}} vara en ON-bas i rummet och låt

\displaystyle F(\boldsymbol{u})=\boldsymbol{u}\times\boldsymbol{a},

där \displaystyle \boldsymbol{a}=\boldsymbol{e}_1+2\boldsymbol{e}_2+2\boldsymbol{e}_3.

  1. Bestäm \displaystyle F:s matris i denna bas.
  2. Vektorerna
\displaystyle \boldsymbol{f}_1=\frac{1}{3}\boldsymbol{a},\qquad\boldsymbol{f}_2=\frac{1}{3}(2\boldsymbol{e}_1-2\boldsymbol{e}_2+\boldsymbol{e}_3),\qquad \boldsymbol{f}_3=\frac{1}{3}(2\boldsymbol{e}_1+\boldsymbol{e}_2-2\boldsymbol{e}_3).
utgör en ny bas. Bestäm \displaystyle F:s matris i den nya basen \displaystyle \underline{\boldsymbol{f}}=\{\boldsymbol{f}_1, \boldsymbol{f}_2,\boldsymbol{f}_3\}



Du ska nu testa rimligheten i svaret. Avbildningsmatrisen skriver Du i Maple enligt

> A:=matrix(2,2,[-13,11,-14,12]);


Den första urbilden skriver Du som

> u1:=matrix(2,1,[3,4]);

Använd nu multiplikations kommandot för att bestämma första bilden

> v1=multiply(A,u1);

Räknar Maple rätt?

Kontrollera nu den andra urbilden!



Projektion och spegling

Läs textavsnittet om definition av matrisframställning för en linjär avbildning Bild:Kap16 3.pdf

Övningar

1. Låt \displaystyle \underline{\boldsymbol{e}}=\{\boldsymbol{e}_1, \boldsymbol{e}_2\} vara en ON-bas i planet. Bestäm matrisen i basen \displaystyle \underline{\boldsymbol{e}} för följande linjära avbildningar:

  1. spegling i \displaystyle x_1-axeln.
  2. ortogonal projektion på linjen \displaystyle x_1+x_2=0.
  3. spegling i linjen \displaystyle x_1+x_2=0.
  4. ortogonal projektion på linjen \displaystyle 4x_1+3x_2=0.


2. Låt \displaystyle G vara ortogonal projektion på normalen till planet \displaystyle x_1+x_2+x_3=0 i \displaystyle {\bf E}^3. Ange \displaystyle G:s matris i standardbasen.


3. Låt \displaystyle F vara ortogonal projektion på planet \displaystyle x_1+x_2+x_3=0 i \displaystyle {\bf E}^3. Ange \displaystyle F:s matris i standardbasen.


4. Låt \displaystyle F vara spegling i planet \displaystyle x_1+x_2+x_3=0 i \displaystyle {\bf E}^3. Ange \displaystyle F:s matris i standardbasen.



Plan rotation

Läs textavsnittet om definition av matrisframställning för en linjär avbildning Bild:Kap16 4.pdf

Övningar

1. Låt \displaystyle \underline{\boldsymbol{e}}=\{\boldsymbol{e}_1, \boldsymbol{e}_2\} vara en ON-bas i planet. Bestäm matrisen i basen \displaystyle \underline{\boldsymbol{e}} för följande linjära avbildningar:

  1. rotation ett kvarts varv i positiv led (dvs \displaystyle \boldsymbol{e}_1 till \displaystyle \boldsymbol{e}_2).
  2. rotation vinkeln \displaystyle \pi/6 i negatitv led (dvs \displaystyle \boldsymbol{e}_2 till \displaystyle \boldsymbol{e}_1).



Rotation i rummet

Läs textavsnittet om definition av matrisframställning för en linjär avbildning Bild:Kap16 5.pdf

Övningar

1. Givet en höger ON-bas i rummet. Följande matriser definierar linjära avbildningar i rummet. Beskriv geometriskt vad dessa gör.

\displaystyle

A_1=\left(\begin{array}{rrr} 1&0 & 0\\ 0& 0& 0\\ 0& 0& 1\end{array}\right)\qquad A_2=\left(\begin{array}{rrr} 1& 0& 0\\ 0& 3& 0\\ 0& 0& 1\end{array}\right)\qquad A_3=\left(\begin{array}{rrr} 1& 0& 0\\ 0& \cos\theta& -\sin\theta\\ 0& \sin\theta& \cos\theta\end{array}\right)



2. Låt \displaystyle \underline{\boldsymbol{e}} vara en höger-ON-bas i rummet och \displaystyle F rotation \displaystyle 2\pi/3 i positiv led runt \displaystyle \boldsymbol{e}_1+\boldsymbol{e}_2+\boldsymbol{e}_3. Beräkna avbildningens matris i basen \displaystyle \underline{\boldsymbol{e}}.


Sammansatta linjära avbildningar

Läs textavsnittet om definition av matrisframställning för en linjär avbildning Bild:Kap16 6.pdf

Övningar

1. Låt \displaystyle \underline{\boldsymbol{e}} vara en bas för \displaystyle V, där dim \displaystyle V=2. Antag att \displaystyle F:V\rightarrow V är en linjär avbildning som uppfyller

\displaystyle \left\{\begin{array}{lcr}F(\boldsymbol{e}_1)&=&\frac{1}{\sqrt2}(\boldsymbol{e}_1+\boldsymbol{e}_2)\\ F(\boldsymbol{e}_2)&=&\frac{1}{\sqrt2}(-\boldsymbol{e}_1+\boldsymbol{e}_2)\end{array}\right.

Bestäm matrisen för \displaystyle F^2 i basen \displaystyle \underline{\boldsymbol{e}}.



Nollrum, Värderum och dimensionssatsen

Läs textavsnittet om definition av matrisframställning för en linjär avbildning Bild:Kap16 7.pdf

Övningar


1. Låt \displaystyle F vara en avbildning på rummet som i basen \displaystyle \boldsymbol{e} ges av matrisen

\displaystyle A=\left(\begin{array}{rrr} 3& -1& -1\\ 2& 0& -1\\ 4& -2& -1\end{array}\right).

Bestäm \displaystyle N(F) och \displaystyle V(F). Visa \displaystyle N(F)\cap V(F)=\boldsymbol{0}. Hur avbildas vektorerna i och \displaystyle V(F)?


2. Avbildningen \displaystyle F på rummet ges i ON-basen \displaystyle \boldsymbol{e} av matrisen

\displaystyle \left(\begin{array}{rrr} 2& -1& -1\\ 1& 0& -1\\ 1& -1&0 \end{array}\right)

och \displaystyle G är ortogonal projektion på linjen \displaystyle \underline{\boldsymbol{e}}[(1,1,1)]^t. Bestäm Visa \displaystyle V(F)\cap N(G).


3. Avbildningen \displaystyle F på rummet ges i ON-basen \displaystyle \boldsymbol{e} av matrisen

\displaystyle \left(\begin{array}{rrr} 1& -2& 1\\ 1& -3& 2\\ 1& 2&-3 \end{array}\right).

Bestäm baser för \displaystyle N(F), \displaystyle V(F), \displaystyle N(F)\cap V(F), \displaystyle N(F^2) och \displaystyle V(F^2).


4. Givet en ON-bas \displaystyle \underline{\boldsymbol{e}} i \displaystyle {\bf E}^3. I denna bas ges avbildningen \displaystyle F av matrisen

\displaystyle \frac{1}{3}\left(\begin{array}{rrr} -2& 1& 1\\ 1& -2& 1\\ 1& 1&-2 \end{array}\right).

Inför en ny bas bestående av vektorer ur \displaystyle N(F) och \displaystyle V(F). Ange sambandet för \displaystyle F i den nya basen. Tolka \displaystyle F geometriskt.


5. \displaystyle M_{22} vara vektorrummet av alla \displaystyle 2\times matriser. Definiera avbildningen \displaystyle F genom

\displaystyle F(A)=\left(\begin{array}{rr} 1&1 \\0 &0 \end{array}\right)A+A\left(\begin{array}{rr} 0&0 \\ 1& 1\end{array}\right).
  1. Visa att \displaystyle F är en linjär avbildning på \displaystyle M_{22} .
  2. Bestäm dim \displaystyle N(F) samt en bas i \displaystyle N(F)


6. Konstruera en matris som representerar en linjär avbildning \displaystyle F:{\bf R}^3\rightarrow{\bf R}^3 med

\displaystyle N(F)=[(1,1,1)^t]

och

\displaystyle V(F)=[(1,0,0)^t,(1,1,0)^t].


7. Den


8. Den


9. Avbildningen






Basbyte

Läs textavsnittet om definition av matrisframställning för en linjär avbildning Bild:Kap16 8.pdf

Övningar

1. Hej




Linjära avbildningar och basbyte

Läs textavsnittet om definition av matrisframställning för en linjär avbildning Bild:Kap16 9.pdf

Övningar


1. Hej




Projektioner och speglingar med basbyte

Läs textavsnittet om definition av matrisframställning för en linjär avbildning Bild:Kap16 10.pdf

Övningar

1. Hej



Rotationer

Läs textavsnittet om definition av matrisframställning för en linjär avbildning Bild:Kap16 11.pdf

Övningar


1. Hej