10.4 Linjära höljet
SamverkanLinalgLIU
10.1 | 10.2 | 10.3 | 10.4 | 10.5 | 10.6 | 10.7 |
Läs textavsnitt 10.4 Definition av linjära höljet.
Du har nu läst definitionen av linjära höljet och här kommer några övningar som testar om du har tagit till dig stoffet.
Innehåll |
Övning 11.4
Låt \displaystyle M vara mängden i Övning 11.3 och låt \displaystyle U=[M] vara linjära höljet för \displaystyle M , dvs \displaystyle U är mängden av alla linjära kombinationer i \displaystyle M .
a) Ange en ekvation \displaystyle U . Vad kallas den geometriska tolkningen av \displaystyle U .
b) Visa att \displaystyle U är ett underrum.
c) Bestäm alla vektorer som inte ligger i \displaystyle U .
Övning 11.5
Låt
V=[(1,0,0,-1)^t,(0,1,-1,0)^t,(1,1,0,0)^t]
och
W=[(1,0,0,-1)^t,(0,1,-1,0)^t,(1,0,0,1)^t].
a) Ange en ekvation för \displaystyle V resp. \displaystyle W .
b) Låt mängden \displaystyle U vara som i Övning 10.4. Bestäm snittmängden \displaystyle U\cap V , dvs mängden av alla gemensamma vektorer som ligger i både \displaystyle U och \displaystyle V . Bestäm också \displaystyle U\cap W .