Trashovn1
SamverkanLinalgLIU
Trashovn1
Antag att \displaystyle \boldsymbol{v}_1=\begin{pmatrix}2\\1\\-1\end{pmatrix} och \displaystyle \boldsymbol{v}_2=\begin{pmatrix}1\\1\\1\end{pmatrix}. Undersök om
a) |
\displaystyle \boldsymbol{u}_1=\begin{pmatrix}4\\1\\-5\end{pmatrix} | b) | \displaystyle \boldsymbol{u}_2=\begin{pmatrix}4\\3\\2\end{pmatrix} | c) | \displaystyle \boldsymbol{u}_3=\begin{pmatrix}-9\\-7\\-3\end{pmatrix} |
kan skrivas som en linjärkombination i mängden \displaystyle \{\boldsymbol{v}_{1},\boldsymbol{v}_{2}\}.
Svar
Lösning a
Lösning b
Lösning c
Trashovn2
Avgör vilka av följande följder av rumsvektorer som är linjärt oberoende
a) | \displaystyle \begin{pmatrix}1\\1\\1\end{pmatrix},\ \begin{pmatrix}3\\1\\2\end{pmatrix} | b) | \displaystyle \begin{pmatrix}1\\1\\1\end{pmatrix},\ \begin{pmatrix}3\\1\\2\end{pmatrix},\ \begin{pmatrix}0\\2\\1\end{pmatrix} | c) | \displaystyle \begin{pmatrix}0\\1\\1\end{pmatrix},\ \begin{pmatrix}1\\0\\1\end{pmatrix},\ \begin{pmatrix}1\\1\\0\end{pmatrix} |
Svar
Lösning a
Lösning b
Lösning c