Slask testovn

SamverkanLinalgLIU

(Skillnad mellan versioner)
Hoppa till: navigering, sök
Rad 1: Rad 1:
-
2. Bestäm matrisen till den linjära avbildningen <math>F:{\bf R^3}\rightarrow{\bf R}^3</math> som i basen <math>\underline{\boldsymbol{e}}=\{\boldsymbol{e}_1, \boldsymbol{e}_2,\boldsymbol{e}_3\}</math> definieras genom
+
2A. Bestäm matrisen till den linjära avbildningen <math>F:{\bf R^3}\rightarrow{\bf R}^3</math> som i basen <math>\underline{\boldsymbol{e}}=\{\boldsymbol{e}_1, \boldsymbol{e}_2,\boldsymbol{e}_3\}</math> definieras genom
<center><math> F(\boldsymbol{e}_1+\boldsymbol{e}_2)=2\boldsymbol{e}_1+\boldsymbol{e}_2,\qquad F(\boldsymbol{e}_2+\boldsymbol{e}_3)=-\boldsymbol{e}_1+2\boldsymbol{e}_2+\boldsymbol{e}_3,\qquad
<center><math> F(\boldsymbol{e}_1+\boldsymbol{e}_2)=2\boldsymbol{e}_1+\boldsymbol{e}_2,\qquad F(\boldsymbol{e}_2+\boldsymbol{e}_3)=-\boldsymbol{e}_1+2\boldsymbol{e}_2+\boldsymbol{e}_3,\qquad
F(\boldsymbol{e}_1)=2\boldsymbol{e}_1+\boldsymbol{e}_2+5\boldsymbol{e}_3. </math></center>
F(\boldsymbol{e}_1)=2\boldsymbol{e}_1+\boldsymbol{e}_2+5\boldsymbol{e}_3. </math></center>
Svar <math>\begin{pmatrix}0&2&-3\\0&1&1\\-5&5&-4\end{pmatrix}</math>
Svar <math>\begin{pmatrix}0&2&-3\\0&1&1\\-5&5&-4\end{pmatrix}</math>
 +
 +
2B. Bestäm matrisen till den linjära avbildningen <math>F:{\bf R^3}\rightarrow{\bf R}^3</math> som i basen <math>\underline{\boldsymbol{e}}=\{\boldsymbol{e}_1, \boldsymbol{e}_2,\boldsymbol{e}_3\}</math> definieras genom
 +
<center><math> F(\boldsymbol{e}_1+\boldsymbol{e}_2)=\boldsymbol{e}_2+2\boldsymbol{e}_3,\qquad F(\boldsymbol{e}_1)=-\boldsymbol{e}_1+2\boldsymbol{e}_2,\qquad
 +
F(\boldsymbol{e}_2+\boldsymbol{e}_3)=2\boldsymbol{e}_1+\boldsymbol{e}_2+5\boldsymbol{e}_3. </math></center>
 +
 +
Svar <math>\begin{pmatrix}1&-1&3\\-1&2&-1\\2&0&5\end{pmatrix}</math>

Versionen från 6 november 2008 kl. 15.27

2A. Bestäm matrisen till den linjära avbildningen \displaystyle F:{\bf R^3}\rightarrow{\bf R}^3 som i basen \displaystyle \underline{\boldsymbol{e}}=\{\boldsymbol{e}_1, \boldsymbol{e}_2,\boldsymbol{e}_3\} definieras genom

\displaystyle F(\boldsymbol{e}_1+\boldsymbol{e}_2)=2\boldsymbol{e}_1+\boldsymbol{e}_2,\qquad F(\boldsymbol{e}_2+\boldsymbol{e}_3)=-\boldsymbol{e}_1+2\boldsymbol{e}_2+\boldsymbol{e}_3,\qquad F(\boldsymbol{e}_1)=2\boldsymbol{e}_1+\boldsymbol{e}_2+5\boldsymbol{e}_3.

Svar \displaystyle \begin{pmatrix}0&2&-3\\0&1&1\\-5&5&-4\end{pmatrix}

2B. Bestäm matrisen till den linjära avbildningen \displaystyle F:{\bf R^3}\rightarrow{\bf R}^3 som i basen \displaystyle \underline{\boldsymbol{e}}=\{\boldsymbol{e}_1, \boldsymbol{e}_2,\boldsymbol{e}_3\} definieras genom

\displaystyle F(\boldsymbol{e}_1+\boldsymbol{e}_2)=\boldsymbol{e}_2+2\boldsymbol{e}_3,\qquad F(\boldsymbol{e}_1)=-\boldsymbol{e}_1+2\boldsymbol{e}_2,\qquad F(\boldsymbol{e}_2+\boldsymbol{e}_3)=2\boldsymbol{e}_1+\boldsymbol{e}_2+5\boldsymbol{e}_3.

Svar \displaystyle \begin{pmatrix}1&-1&3\\-1&2&-1\\2&0&5\end{pmatrix}