Slask testovn1
SamverkanLinalgLIU
(Skillnad mellan versioner)
(Ny sida: 1a. Låt <math>\underline{\boldsymbol{e}} = \{\boldsymbol{e}_1, \boldsymbol{e}_2,\boldsymbol{e}_3\}</math> vara en bas i <math>{\bf R}^3</math>. Avgör vilka av följande avbildningar är l...) |
|||
Rad 7: | Rad 7: | ||
Svar <math>F_2</math> | Svar <math>F_2</math> | ||
- | 1b. Låt <math>\underline{\boldsymbol{e}} = \{\boldsymbol{e}_1, \boldsymbol{e}_2\}</math> vara en bas i <math>{\bf R}^ | + | 1b. Låt <math>\underline{\boldsymbol{e}} = \{\boldsymbol{e}_1, \boldsymbol{e}_2,\boldsymbol{e}_3\}</math> vara en bas i <math>{\bf R}^3</math>. Avgör vilka av följande avbildningar är linjära. |
+ | |||
+ | # <math>F_1(x_1\boldsymbol{e}_1+x_2\boldsymbol{e}_2+x_3\boldsymbol{e}_3)=(x_1-x_3)\boldsymbol{e}_1+2x_1\boldsymbol{e}_2+(x_1+x_3)\boldsymbol{e}_3</math> | ||
+ | # <math>F_2(\underline{\boldsymbol{e}}X) = \underline{\boldsymbol{e}}\begin{pmatrix}x_1\\ x_2\\ x_1\cdot x_2\end{pmatrix}\,\mbox{.}</math> | ||
+ | # <math>F_3(\underline{\boldsymbol{e}}X) = \underline{\boldsymbol{e}}\begin{pmatrix}2+x_1\\ x_1+x_3\\ x_3\end{pmatrix}\,\mbox{.}</math> | ||
+ | |||
+ | Svar <math>F_1</math> |
Versionen från 6 november 2008 kl. 15.20
1a. Låt \displaystyle \underline{\boldsymbol{e}} = \{\boldsymbol{e}_1, \boldsymbol{e}_2,\boldsymbol{e}_3\} vara en bas i \displaystyle {\bf R}^3. Avgör vilka av följande avbildningar är linjära.
- \displaystyle F_1(\underline{\boldsymbol{e}}X) = \underline{\boldsymbol{e}}\begin{pmatrix}x_1\\ x_2^2\\ x_3^3\end{pmatrix}\,\mbox{.}
- \displaystyle F_2(\underline{\boldsymbol{e}}X) = \underline{\boldsymbol{e}}\begin{pmatrix}x_1+x_2\\ x_3\\ x_1-x_2\end{pmatrix}\,\mbox{.}
- \displaystyle F_3(x_1\boldsymbol{e}_1+x_2\boldsymbol{e}_2+x_3\boldsymbol{e}_3)=(1+x_1)\boldsymbol{e}_1+(x_2+x_3)\boldsymbol{e}_2+x_2\boldsymbol{e}_3
Svar \displaystyle F_2
1b. Låt \displaystyle \underline{\boldsymbol{e}} = \{\boldsymbol{e}_1, \boldsymbol{e}_2,\boldsymbol{e}_3\} vara en bas i \displaystyle {\bf R}^3. Avgör vilka av följande avbildningar är linjära.
- \displaystyle F_1(x_1\boldsymbol{e}_1+x_2\boldsymbol{e}_2+x_3\boldsymbol{e}_3)=(x_1-x_3)\boldsymbol{e}_1+2x_1\boldsymbol{e}_2+(x_1+x_3)\boldsymbol{e}_3
- \displaystyle F_2(\underline{\boldsymbol{e}}X) = \underline{\boldsymbol{e}}\begin{pmatrix}x_1\\ x_2\\ x_1\cdot x_2\end{pmatrix}\,\mbox{.}
- \displaystyle F_3(\underline{\boldsymbol{e}}X) = \underline{\boldsymbol{e}}\begin{pmatrix}2+x_1\\ x_1+x_3\\ x_3\end{pmatrix}\,\mbox{.}
Svar \displaystyle F_1