16.2 Matrisframställning
SamverkanLinalgLIU
Rad 5: | Rad 5: | ||
1. Låt <math>\{\boldsymbol{e}_1, \boldsymbol{e}_2\}</math> vara en bas i <math>{\bf R}^2</math>. Bestäm matrisen för den linjära avbildningen <math>F:{\bf R}^2\rightarrow:{\bf R}^2</math>, sådan att | 1. Låt <math>\{\boldsymbol{e}_1, \boldsymbol{e}_2\}</math> vara en bas i <math>{\bf R}^2</math>. Bestäm matrisen för den linjära avbildningen <math>F:{\bf R}^2\rightarrow:{\bf R}^2</math>, sådan att | ||
- | <center><math>F(3\boldsymbol{e}_1+4\boldsymbol{e}_2)=5\boldsymbol{e}_1+6\boldsymbol{e}_2,\qquad F(2\boldsymbol{e}_1+3\boldsymbol{e}_2)=7\boldsymbol{e}_1+8\boldsymbol{e}_2</math></center> | + | <center><math>F(3\boldsymbol{e}_1+4\boldsymbol{e}_2)=5\boldsymbol{e}_1+6\boldsymbol{e}_2,\qquad F(2\boldsymbol{e}_1+3\boldsymbol{e}_2)=7\boldsymbol{e}_1+8\boldsymbol{e}_2</math></center>{{#NAVCONTENT: |
- | {{#NAVCONTENT: | + | |
Svar|Svar till övning 1| | Svar|Svar till övning 1| | ||
- | Tips | + | Tips och lösning|Tips och lösning till övning 1}} |
- | + | ||
- | + | ||
- | + | ||
Du ska nu testa rimligheten i svaret. Avbildningsmatrisen skriver Du i Maple enligt | Du ska nu testa rimligheten i svaret. Avbildningsmatrisen skriver Du i Maple enligt |
Versionen från 3 oktober 2008 kl. 07.19
Läs textavsnitt 16.2 Matrisframställning Bild:Kap16 2.pdf
Övningar
1. Låt \displaystyle \{\boldsymbol{e}_1, \boldsymbol{e}_2\} vara en bas i \displaystyle {\bf R}^2. Bestäm matrisen för den linjära avbildningen \displaystyle F:{\bf R}^2\rightarrow:{\bf R}^2, sådan att
Du ska nu testa rimligheten i svaret. Avbildningsmatrisen skriver Du i Maple enligt
> A:=matrix(2,2,[-13,11,-14,12]); Den första urbilden skriver Du som > u1:=matrix(2,1,[3,4]); Använd nu multiplikations kommandot för att bestämma första bilden > v1=multiply(A,u1);
Räknar Maple rätt?
Kontrollera nu den andra urbilden!
2. Bestäm matrisen till den linjära avbildningen \displaystyle F:{\bf R^3}\rightarrow{\bf R}^3 som i basen \displaystyle \underline{\boldsymbol{e}}=\{\boldsymbol{e}_1, \boldsymbol{e}_2,\boldsymbol{e}_3\} definieras genom
3. Den linjära avbildningen \displaystyle F:{\bf R^3}\rightarrow{\bf R}^3 har i basen \displaystyle \underline{\boldsymbol{e}}=\{\boldsymbol{e}_1, \boldsymbol{e}_2,\boldsymbol{e}_3\} matrisen
a) Bestäm bilden \displaystyle \boldsymbol{u}=\underline{\boldsymbol{e}}\left(\begin{array}{r} 2\\-1 \\ 3\end{array}\right) under \displaystyle F. b) Ange urbilden till \displaystyle \boldsymbol{v}=2\boldsymbol{e}_1+5\boldsymbol{e}_2+2\boldsymbol{e}_3 under \displaystyle F.
4. Bestäm matrisen till den linjära avbildningen \displaystyle {\color{Blue}F}:{\bf R^3}\rightarrow{\bf R}^3 som i basen \displaystyle \underline{\boldsymbol{e}} ges av
- Visa att \displaystyle F är linjär.
- Bestäm \displaystyle F^{-1}:s matris i basen \displaystyle \underline{\boldsymbol{e}}
5. Låt \displaystyle \underline{\boldsymbol{e}} vara en bas för \displaystyle V$, där dim . Ange matrisen för den linjära avbildning, \displaystyle F, som byter plats på \displaystyle \boldsymbol{e}_1+2\boldsymbol{e}_2 och \displaystyle 2\boldsymbol{e}_1+\boldsymbol{e}_2. Bestäm sedan vektorer \displaystyle \boldsymbol{f}_1, \displaystyle \boldsymbol{f}_2 sådan att \displaystyle F(\boldsymbol{f}_1)=\boldsymbol{f}_1 och \displaystyle F(\boldsymbol{f}_2)=-\boldsymbol{f}_2. Välj \displaystyle \underline{\boldsymbol{f}}=\{\boldsymbol{e}_1,\boldsymbol{f}_2\} som bas. Ange \displaystyle F:s matris i denna bas.
6. Låt \displaystyle \underline{\boldsymbol{e}} vara en ON-bas i rummet och låt
där \displaystyle \boldsymbol{a}=\boldsymbol{e}_1+2\boldsymbol{e}_2+2\boldsymbol{e}_3.
- Bestäm \displaystyle F:s matris i denna bas.
- Vektorerna
Reflektionsuppgifter
1. Finns det linjära avbildningar som inte kan skrivas med hjälp av matriser? Motivera ditt svar med lämplig teori.
2. Beskriv hur avbildningsmatrisen för en linjär avbildning är uppbyggd, både vad gäller storlek och innehåll.
3. Är det rimligt att tänk sig att alla avbildningsmatriser för linjära avbildningar är inverterbara?