Lösning till övning 3

SamverkanLinalgLIU

(Skillnad mellan versioner)
Hoppa till: navigering, sök
(Ny sida: Låt <math>\boldsymbol{u}=\underline{\boldsymbol{e}}X_1=\underline{\boldsymbol{e}}\rvekt{a_1}{b_1}{c_1}</math> och <math>\boldsymbol{v}=\underline{\boldsymbol{e}}{e}X_2=\underline{\boldsymb...)
Rad 1: Rad 1:
-
Låt <math>\boldsymbol{u}=\underline{\boldsymbol{e}}X_1=\underline{\boldsymbol{e}}\rvekt{a_1}{b_1}{c_1}</math> och <math>\boldsymbol{v}=\underline{\boldsymbol{e}}{e}X_2=\underline{\boldsymbol{e}}\rvekt{a_2}{b_2}{c_2}</math>.
+
Låt <math>\boldsymbol{u}=\underline{\boldsymbol{e}}X_1=\underline{\boldsymbol{e}}\begin{pmatrix}{a_1}\\{b_1}\\{c_1}\end{pmatrix}</math> och <math>\boldsymbol{v}=\underline{\boldsymbol{e}}{e}X_2=\underline{\boldsymbol{e}}\begin{pmatrix}{a_2}\\{b_2}\\{c_2}\end{pmatrix}</math>.
-
Vi behöver summan
+
-
<center><math>\boldsymbol{u}+\boldsymbol{v}=\underline{\boldsymbol{e}}\rvekt{a_1}{b_1}{c_1}+\underline{\boldsymbol{e}}\rvekt{a_2}{b_2}{c_2}=\underline{\boldsymbol{e}}{e}\rvekt{a_1+a_2}{b_1+b_2}{c_1+c_2}</center></math>
+
-
och
+
-
<center><math>\lambda\boldsymbol{u}=\lambda\underline{\boldsymbol{e}}{e}\rvekt{a_1}{b_1}{c_1}=\underline{\boldsymbol{e}}\rvekt{\lambda a_1}{\lambda b_1}{\lambda c_1}.</center></math>
+
-
Avbildningen <math>G</math> är inte linjär, ty
+
-
<center><math>1.\quad G(\boldsymbol{u}+\boldsymbol{v})\neq G(\boldsymbol{u})+G(\boldsymbol{v})\qquad\qquad 2.\quad G(\lambda\boldsymbol{u})\neq\lambda G(\boldsymbol{u}).</center></math>
+
-
T.ex., följer av~(\ref{C445}) att
+
-
<center><math>G(\lambda\boldsymbol{u})=G\left(\underline{\boldsymbol{e}}\rvekt{\lambda a_1}{\lambda b_1}{\lambda c_1}\right)
+
-
=\underline{\boldsymbol{e}}\rvektc{\lambda a_1\cdot\lambda c_1}{\lambda^2b_1^2}{\lambda b_1+\lambda c_1}
+
-
=\lambda\underline{\boldsymbol{e}}\rvektc{\lambda a_1c_1}{\lambda b_1^2}{b_1+c_1}\neq \lambda G(\boldsymbol{u}).</center></math>
+

Versionen från 14 augusti 2008 kl. 18.35

Låt \displaystyle \boldsymbol{u}=\underline{\boldsymbol{e}}X_1=\underline{\boldsymbol{e}}\begin{pmatrix}{a_1}\\{b_1}\\{c_1}\end{pmatrix} och \displaystyle \boldsymbol{v}=\underline{\boldsymbol{e}}{e}X_2=\underline{\boldsymbol{e}}\begin{pmatrix}{a_2}\\{b_2}\\{c_2}\end{pmatrix}.