Processing Math: Done
Lösning till övning 2
SamverkanLinalgLIU
(Skillnad mellan versioner)
Rad 6: | Rad 6: | ||
\end{align}</math></center> | \end{align}</math></center> | ||
Alltså är <math>F_1(\lambda\boldsymbol{u})\neq\lambda F_1(\boldsymbol{u})</math>. Man kan också visa att <math>F_1</math> inte är additiv. | Alltså är <math>F_1(\lambda\boldsymbol{u})\neq\lambda F_1(\boldsymbol{u})</math>. Man kan också visa att <math>F_1</math> inte är additiv. | ||
- | :*1. Vi visar först att <math>F_2</math> är additiv. Låt <math>\boldsymbol{u}_1=a_1\boldsymbol{e}_1+b_1\boldsymbol{e}_2</math> och <math>\boldsymbol{u}=a_2\boldsymbol{e}_1+b_2\boldsymbol{e}_2</math>. Då är | + | :*1. Vi visar först att <math>F_2</math> är additiv. Låt <math>\boldsymbol{u}_1=a_1\boldsymbol{e}_1+b_1\boldsymbol{e}_2</math> och <math>\boldsymbol{u}=a_2\boldsymbol{e}_1+b_2\boldsymbol{e}_2</math>. Då är |
- | Vi får att | + | <center><math>\boldsymbol{u}_1+\boldsymbol{u}_2=(a_1+a_2)\boldsymbol{e}_1+(b_1+b_2)\boldsymbol{e}_2.</math></center> |
- | <center><math>F_2(\boldsymbol{u}_1+\boldsymbol{u}_2)=F_2((a_1+a_2)\boldsymbol{e}_1+(b_1+b_2)\boldsymbol{e}_2)=\underline{\boldsymbol{e}}\dbinom{ | + | Vi får att |
- | Av räknelagarna för matriser följer nu att | + | <center><math>F_2(\boldsymbol{u}_1+\boldsymbol{u}_2)=F_2((a_1+a_2)\boldsymbol{e}_1+(b_1+b_2)\boldsymbol{e}_2)=\underline{\boldsymbol{e}}\dbinom{(a_1+a_2)+(b_1+b_2)}{a_1+a_2}.</math></center> |
- | <center><math>F(\boldsymbol{u}_1+\boldsymbol{u}_2)=\underline{\boldsymbol{e}}\dbinom{ | + | Av räknelagarna för matriser följer nu att |
+ | <center><math>F(\boldsymbol{u}_1+\boldsymbol{u}_2)=\underline{\boldsymbol{e}}\dbinom{a_1+b_1}{a_1}+\underline{\boldsymbol{e}}\dbinom{a_2+b_2}{a_2} | ||
=F_2(\boldsymbol{u}_1)+F(\boldsymbol{u}_2).</math></center> | =F_2(\boldsymbol{u}_1)+F(\boldsymbol{u}_2).</math></center> | ||
- | Vi visar nu att <math>F_2</math> är homogen. Om <math>\boldsymbol{u}=x_1\boldsymbol{e}_1+x_2\boldsymbol{e}_2</math>, så är <math>\lambda\boldsymbol{u}=\lambda x_1\boldsymbol{e}_1+\lambda x_2\boldsymbol{e}_2</math>. | + | 2. Vi visar nu att <math>F_2</math> är homogen. Om <math>\boldsymbol{u}=x_1\boldsymbol{e}_1+x_2\boldsymbol{e}_2</math>, så är <math>\lambda\boldsymbol{u}=\lambda x_1\boldsymbol{e}_1+\lambda x_2\boldsymbol{e}_2</math>. |
- | Då är | + | Då är |
<center><math>F_2(\lambda\boldsymbol{u})=F(\lambda x_1\boldsymbol{e}_1+\lambda x_2\boldsymbol{e}_2) | <center><math>F_2(\lambda\boldsymbol{u})=F(\lambda x_1\boldsymbol{e}_1+\lambda x_2\boldsymbol{e}_2) | ||
- | =\underline{\boldsymbol{e}}\dbinom{ | + | =\underline{\boldsymbol{e}}\dbinom{\lambda x_1+\lambda x_2}{\lambda x_1} |
- | =\lambda\underline{\boldsymbol{e}}\dbinom{ | + | =\lambda\underline{\boldsymbol{e}}\dbinom{x_1+x_2}{x_1}=\lambda F(\boldsymbol{u}).</math></center> |
- | Alltså är <math>F_2</math> linjär. | + | Alltså är <math>F_2</math> linjär. |
:*Låt | :*Låt |
Versionen från 14 augusti 2008 kl. 11.39
- Vi visar att
F1 inte är linjär genom att visa attF1 inte är homogen. Om , så är=x1
1+x2
2
- Vi visar att
=(
x1)
1+(
x2)
2





















Alltså är )
=
F1(
)
- 1. Vi visar först att
F2 är additiv. Låt och1=a1
1+b1
2
. Då är=a2
1+b2
2
- 1. Vi visar först att





Vi får att








Av räknelagarna för matriser följer nu att











2. Vi visar nu attF2 är homogen. Om, så är =x1
1+x2
2
. Då är =
x1
1+
x2
2



















Alltså är F2 linjär.
- Låt