Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath

Lösning till övning 2

SamverkanLinalgLIU

(Skillnad mellan versioner)
Hoppa till: navigering, sök
Rad 6: Rad 6:
\end{align}</math></center>
\end{align}</math></center>
Alltså är <math>F_1(\lambda\boldsymbol{u})\neq\lambda F_1(\boldsymbol{u})</math>. Man kan också visa att <math>F_1</math> inte är additiv.
Alltså är <math>F_1(\lambda\boldsymbol{u})\neq\lambda F_1(\boldsymbol{u})</math>. Man kan också visa att <math>F_1</math> inte är additiv.
-
:*1. Vi visar först att <math>F_2</math> är additiv. Låt <math>\boldsymbol{u}_1=a_1\boldsymbol{e}_1+b_1\boldsymbol{e}_2</math> och <math>\boldsymbol{u}=a_2\boldsymbol{e}_1+b_2\boldsymbol{e}_2</math>. Då är <center><math>\boldsymbol{u}_1+\boldsymbol{u}_2=(a_1+a_2)\boldsymbol{e}_1+(b_1+b_2)\boldsymbol{e}_2.</math></center>
+
:*1. Vi visar först att <math>F_2</math> är additiv. Låt <math>\boldsymbol{u}_1=a_1\boldsymbol{e}_1+b_1\boldsymbol{e}_2</math> och <math>\boldsymbol{u}=a_2\boldsymbol{e}_1+b_2\boldsymbol{e}_2</math>. Då är
-
Vi får att
+
<center><math>\boldsymbol{u}_1+\boldsymbol{u}_2=(a_1+a_2)\boldsymbol{e}_1+(b_1+b_2)\boldsymbol{e}_2.</math></center>
-
<center><math>F_2(\boldsymbol{u}_1+\boldsymbol{u}_2)=F_2((a_1+a_2)\boldsymbol{e}_1+(b_1+b_2)\boldsymbol{e}_2)=\underline{\boldsymbol{e}}\dbinom{-2(a_1+a_2)+3(b_1+b_2)}{4(a_1+a_2)-5(b_1+b_2)}.</math></center>
+
Vi får att
-
Av räknelagarna för matriser följer nu att
+
<center><math>F_2(\boldsymbol{u}_1+\boldsymbol{u}_2)=F_2((a_1+a_2)\boldsymbol{e}_1+(b_1+b_2)\boldsymbol{e}_2)=\underline{\boldsymbol{e}}\dbinom{(a_1+a_2)+(b_1+b_2)}{a_1+a_2}.</math></center>
-
<center><math>F(\boldsymbol{u}_1+\boldsymbol{u}_2)=\underline{\boldsymbol{e}}\dbinom{-2a_1+3b_1}{4a_1-5b_1}+\underline{\boldsymbol{e}}\dbinom{-2a_2+3b_2}{4a_2-5b_2}
+
Av räknelagarna för matriser följer nu att
 +
<center><math>F(\boldsymbol{u}_1+\boldsymbol{u}_2)=\underline{\boldsymbol{e}}\dbinom{a_1+b_1}{a_1}+\underline{\boldsymbol{e}}\dbinom{a_2+b_2}{a_2}
=F_2(\boldsymbol{u}_1)+F(\boldsymbol{u}_2).</math></center>
=F_2(\boldsymbol{u}_1)+F(\boldsymbol{u}_2).</math></center>
-
Vi visar nu att <math>F_2</math> är homogen. Om <math>\boldsymbol{u}=x_1\boldsymbol{e}_1+x_2\boldsymbol{e}_2</math>, så är <math>\lambda\boldsymbol{u}=\lambda x_1\boldsymbol{e}_1+\lambda x_2\boldsymbol{e}_2</math>.
+
2. Vi visar nu att <math>F_2</math> är homogen. Om <math>\boldsymbol{u}=x_1\boldsymbol{e}_1+x_2\boldsymbol{e}_2</math>, så är <math>\lambda\boldsymbol{u}=\lambda x_1\boldsymbol{e}_1+\lambda x_2\boldsymbol{e}_2</math>.
-
Då är
+
Då är
<center><math>F_2(\lambda\boldsymbol{u})=F(\lambda x_1\boldsymbol{e}_1+\lambda x_2\boldsymbol{e}_2)
<center><math>F_2(\lambda\boldsymbol{u})=F(\lambda x_1\boldsymbol{e}_1+\lambda x_2\boldsymbol{e}_2)
-
=\underline{\boldsymbol{e}}\dbinom{-2\lambda x_1+3\lambda x_2}{4\lambda x_1-5\lambda x_2}
+
=\underline{\boldsymbol{e}}\dbinom{\lambda x_1+\lambda x_2}{\lambda x_1}
-
=\lambda\underline{\boldsymbol{e}}\dbinom{-2x_1+3x_2}{4x_1-5x_2}=\lambda F(\boldsymbol{u}).</math></center>
+
=\lambda\underline{\boldsymbol{e}}\dbinom{x_1+x_2}{x_1}=\lambda F(\boldsymbol{u}).</math></center>
-
Alltså är <math>F_2</math> linjär.
+
Alltså är <math>F_2</math> linjär.
:*Låt
:*Låt

Versionen från 14 augusti 2008 kl. 11.39

  • Vi visar att F1 inte är linjär genom att visa att F1 inte är homogen. Om =x11+x22, så är

=(x1)1+(x2)2. Då gäller att

F1()=F1(x11+x22x2)=(x2)21+(x2)2=(x221+x22)=(x221+x22)=F1()

Alltså är F1()=F1(). Man kan också visa att F1 inte är additiv.

  • 1. Vi visar först att F2 är additiv. Låt 1=a11+b12 och =a21+b22. Då är
1+2=(a1+a2)1+(b1+b2)2
     Vi får att
F2(1+2)=F2((a1+a2)1+(b1+b2)2)=a1+a2(a1+a2)+(b1+b2) 
     Av räknelagarna för matriser följer nu att
F(1+2)=a1a1+b1+a2a2+b2=F2(1)+F(2) 
     2. Vi visar nu att F2 är homogen. Om =x11+x22, så är =x11+x22.
     Då är
F2()=F(x11+x22)=x1x1+x2=x1x1+x2=F() 
    Alltså är F2 linjär.
  • Låt