Slaskövning2
SamverkanLinalgLIU
Rad 41: | Rad 41: | ||
3.7 | 3.7 | ||
- | Bestäm vinkeln mellan vektorerna | + | Bestäm vinkeln mellan vektorerna <math>\boldsymbol{u}</math> och <math>\boldsymbol{v}</math> då man vet att <math>\boldsymbol{u}+3\boldsymbol{v}</math> är ortogonal mot <math>2\boldsymbol{u}-\boldsymbol{v}</math> och |
- | + | <math>\boldsymbol{u}+7\boldsymbol{v}</math> är ortogonal mot <math>2\boldsymbol{u}+\boldsymbol{v}</math>. |
Versionen från 6 mars 2010 kl. 18.46
Vi antar nedan att \displaystyle \underline{\boldsymbol{e}}=\{\boldsymbol{e}_1,\boldsymbol{e}_2 \} och \displaystyle \underline{\boldsymbol{e}}=\{\boldsymbol{e}_1,\boldsymbol{e}_2,\boldsymbol{e}_3\} är en bas (ON-bas där det krävs) för planet resp. rummet.
3.1
Vi vet att \displaystyle |\boldsymbol{u}|=3, \displaystyle |\boldsymbol{v}|=4 och \displaystyle |\boldsymbol{u-v}|=5. Beräkna \displaystyle \boldsymbol{u}\cdot\boldsymbol{v}.
3.2
För vilka värden på \displaystyle a är vektorerna
\displaystyle \boldsymbol{u}=\underline{\boldsymbol{e}}\begin{pmatrix}a\\ -2\\1\end{pmatrix} och \displaystyle \boldsymbol{v}=\underline{\boldsymbol{e}}\begin{pmatrix}2a\\a\\-4\end{pmatrix} ortogonala?
3.3 Bestäm en enhetsvektor i \displaystyle yz-planet som är vinkelrät mot vektorn \displaystyle \boldsymbol{u}=\underline{\boldsymbol{e}}\begin{pmatrix}1\\2\\-1\end{pmatrix}.
3.4
Bestäm en vektor som bildar lika stora vinklar med vektorerna \displaystyle \boldsymbol{v}_1=\underline{\boldsymbol{e}}\begin{pmatrix}1\\1\\1\end{pmatrix},
\displaystyle \boldsymbol{v}_2=\underline{\boldsymbol{e}}\begin{pmatrix}1\\1\\0\end{pmatrix} och \displaystyle \boldsymbol{v}_3=\underline{\boldsymbol{e}}\begin{pmatrix}1\\0\\0\end{pmatrix}.
3.5 Antag att \displaystyle \boldsymbol{u}=\underline{\boldsymbol{e}}\begin{pmatrix}2\\-3\\6\end{pmatrix} och \displaystyle \boldsymbol{v}=\underline{\boldsymbol{e}}\begin{pmatrix}1\\2\\2\end{pmatrix}.
- Bestäm projektionen av \displaystyle \boldsymbol{u} på \displaystyle \boldsymbol{v} samt dess längd, dvs \displaystyle \boldsymbol{u}_{\parallel\boldsymbol{v}} samt \displaystyle |\boldsymbol{u}_{\parallel\boldsymbol{v}}|.
- Bestäm \displaystyle \boldsymbol{v}_{\parallel\boldsymbol{u}} samt \displaystyle |\boldsymbol{v}_{\parallel\boldsymbol{u}}|.
3.6 Låt \displaystyle \boldsymbol{v}=\underline{\boldsymbol{e}}\begin{pmatrix}2\\2\\1\end{pmatrix}. Dela upp vektorn \displaystyle \boldsymbol{u}=\underline{\boldsymbol{e}}\begin{pmatrix}7\\-2\\3\end{pmatrix} som en summa
där \displaystyle \boldsymbol{u}_{\parallel\boldsymbol{v}} är parallell med vektorn \displaystyle \boldsymbol{v} och \displaystyle \boldsymbol{u}_{\perp\boldsymbol{v}} är ortogonal mot \displaystyle \boldsymbol{v}.
3.7 Bestäm vinkeln mellan vektorerna \displaystyle \boldsymbol{u} och \displaystyle \boldsymbol{v} då man vet att \displaystyle \boldsymbol{u}+3\boldsymbol{v} är ortogonal mot \displaystyle 2\boldsymbol{u}-\boldsymbol{v} och \displaystyle \boldsymbol{u}+7\boldsymbol{v} är ortogonal mot \displaystyle 2\boldsymbol{u}+\boldsymbol{v}.