Slask dugga 5
SamverkanLinalgLIU
Rad 47: | Rad 47: | ||
4a. Ange den <math>3\times3</math> matris har egenvärden <math>\lambda_1=-4</math>, <math>\lambda_2=-3</math> och <math>\lambda_3=0</math> hörande till egenvektorerna | 4a. Ange den <math>3\times3</math> matris har egenvärden <math>\lambda_1=-4</math>, <math>\lambda_2=-3</math> och <math>\lambda_3=0</math> hörande till egenvektorerna | ||
<math>\boldsymbol{v}_ 1=(1,-1,0)^t</math>, <math>\boldsymbol{v}_ 2=(1,1,1)^t</math> resp. <math>\boldsymbol{v}_ 3=(1,1,0)^t</math>. | <math>\boldsymbol{v}_ 1=(1,-1,0)^t</math>, <math>\boldsymbol{v}_ 2=(1,1,1)^t</math> resp. <math>\boldsymbol{v}_ 3=(1,1,0)^t</math>. | ||
- | + | ||
Svar: <math>\left(\begin{array}{rrr}{-2}{2}{-3}{2}{-2}{-3}{0}{0}{-3}\end{array}\right)</math> | Svar: <math>\left(\begin{array}{rrr}{-2}{2}{-3}{2}{-2}{-3}{0}{0}{-3}\end{array}\right)</math> |
Versionen från 29 november 2009 kl. 11.39
1a. En linjär avbildning R3
=
1
2
3





Bestäm konstanten 1−2
2+
3
Svar:
1b. En linjär avbildning R3
=
1
2
3





Bestäm konstanten 1+2
2+2
3
Svar:
2a. En linjär avbildning R3
=
1
2
3





Bestäm konstanten =−3
Svar:
2b. En linjär avbildning R3
=
1
2
3





Bestäm konstanten =−3
Svar:
3a. Bestäm egenvärden och egenvektorer till den linjära avbildningen





Svar: 1=1
1=(−3
0
1)t
\displaystyle \lambda_2=2, \displaystyle \boldsymbol{v}_2=(1,0,0)^t \displaystyle \lambda_3=3, \displaystyle \boldsymbol{v}_3=(1,1,0)^t
3b. Bestäm egenvärden och egenvektorer till den linjära avbildningen \displaystyle F som har matrisen
Svar: \displaystyle \lambda_1=-1, \displaystyle \boldsymbol{v}_1=(-1,0,1)^t
\displaystyle \lambda_2=2, \displaystyle \boldsymbol{v}_2=(1,1,0)^t \displaystyle \lambda_3=3, \displaystyle \boldsymbol{v}_3=(1,0,0)^t
4a. Ange den \displaystyle 3\times3 matris har egenvärden \displaystyle \lambda_1=-4, \displaystyle \lambda_2=-3 och \displaystyle \lambda_3=0 hörande till egenvektorerna
\displaystyle \boldsymbol{v}_ 1=(1,-1,0)^t, \displaystyle \boldsymbol{v}_ 2=(1,1,1)^t resp. \displaystyle \boldsymbol{v}_ 3=(1,1,0)^t.
Svar: \displaystyle \left(\begin{array}{rrr}{-2}{2}{-3}{2}{-2}{-3}{0}{0}{-3}\end{array}\right)