Lösning till övning 2
SamverkanLinalgLIU
| Rad 1: | Rad 1: | ||
| - | :*  | + | :*Vi visar att <math>F_1</math> inte är linjär genom att visa att <math>F_1</math> inte är homogen. Om <math>\boldsymbol{u}=x_1\boldsymbol{e}_1+x_2\boldsymbol{e}_2</math>, så är  | 
| - | + | <math>\lambda\boldsymbol{u}=(\lambda x_1)\boldsymbol{e}_1+(\lambda x_2)\boldsymbol{e}_2</math>. Då gäller att  | |
| - | <math>\lambda\boldsymbol{u}=\lambda x_1\boldsymbol{e}_1+\lambda x_2\boldsymbol{e}  | + | <center><math>\begin{align}  | 
| - | :*  | + | F_1(\lambda\boldsymbol{u})&=F_1(\lambda x_1\boldsymbol{e}_1+\lambda x_2\boldsymbol{e}_2x_2)=(\lambda x_2)^2\boldsymbol{e}_1+(\lambda x_2)\boldsymbol{e}_2\\  | 
| + |               &=\lambda(\lambda x_2^2\boldsymbol{e}_1+x_2\boldsymbol{e}_2)\neq\lambda(x_2^2\boldsymbol{e}_1+x_2\boldsymbol{e}_2)=\lambda F_1(\boldsymbol{u}).  | ||
| + | \end{align}</math></center>  | ||
| + | Alltså är <math>F_1(\lambda\boldsymbol{u})\neq\lambda F_1(\boldsymbol{u})</math>. Man kan också visa att <math>F_1</math> inte är additiv.  | ||
| + | :*1. Vi visar först att <math>F_2</math> är additiv. Låt <math>\boldsymbol{u}_1=a_1\boldsymbol{e}_1+b_1\boldsymbol{e}_2</math> och <math>\boldsymbol{u}=a_2\boldsymbol{e}_1+b_2\boldsymbol{e}_2</math>. Då är <center><math>\boldsymbol{u}_1+\boldsymbol{u}_2=(a_1+a_2)\boldsymbol{e}_1+(b_1+b_2)\boldsymbol{e}_2.</math></center>  | ||
| + | Vi får att  | ||
| + | <center><math>F_2(\boldsymbol{u}_1+\boldsymbol{u}_2)=F_2((a_1+a_2)\boldsymbol{e}_1+(b_1+b_2)\boldsymbol{e}_2)=\underline{\boldsymbol{e}}\dbinom{(a_1+a_2)+(b_1+b_2)}{a_1+a_2}.</math></center>  | ||
| + | Av räknelagarna för matriser följer nu att     <center><math>F(\boldsymbol{u}_1+\boldsymbol{u}_2)=\underline{\boldsymbol{e}}\dbinom{a_1+b_1}{a_1}+\underline{\boldsymbol{e}}\dbinom{a_2+b_2}{a_2}                          =F_2(\boldsymbol{u}_1)+F(\boldsymbol{u}_2).</math></center>  | ||
| + | 2. Vi visar nu att <math>F_2</math> är homogen. Om <math>\boldsymbol{u}=x_1\boldsymbol{e}_1+x_2\boldsymbol{e}_2</math>, så är <math>\lambda\boldsymbol{u}=\lambda x_1\boldsymbol{e}_1+\lambda x_2\boldsymbol{e}_2</math>.  | ||
| + | Då är  | ||
| + | <center><math>F_2(\lambda\boldsymbol{u})=F(\lambda x_1\boldsymbol{e}_1+\lambda x_2\boldsymbol{e}_2)  | ||
| + |                     =\underline{\boldsymbol{e}}\dbinom{\lambda x_1+\lambda x_2}{\lambda x_1}                   =\lambda\underline{\boldsymbol{e}}\dbinom{x_1+x_2}{x_1}=\lambda F(\boldsymbol{u}).</math></center>  | ||
| + | Alltså är <math>F_2</math> linjär.  | ||
| + | :*c) Eftersom   | ||
| + |                 <center><math>F_3(\lambda\boldsymbol{u})=F_3(\lambda x_1\boldsymbol{e}_1+\lambda x_2\boldsymbol{e}_2)=\underline{\boldsymbol{e}}\begin{pmatrix}{\lambda x_1}\\{1}\end{pmatrix}\neq\lambda\begin{pmatrix}{x_1}\\{1}\end{pmatrix}  | ||
| + |                                      =\lambda F_3(\boldsymbol{u}),</math></center>  | ||
| + | så är <math>F_3</math> inte homogen och därmed inte linjär.  | ||
Nuvarande version
- Vi visar att \displaystyle F_1 inte är linjär genom att visa att \displaystyle F_1 inte är homogen. Om \displaystyle \boldsymbol{u}=x_1\boldsymbol{e}_1+x_2\boldsymbol{e}_2, så är
 
\displaystyle \lambda\boldsymbol{u}=(\lambda x_1)\boldsymbol{e}_1+(\lambda x_2)\boldsymbol{e}_2. Då gäller att
F_1(\lambda\boldsymbol{u})&=F_1(\lambda x_1\boldsymbol{e}_1+\lambda x_2\boldsymbol{e}_2x_2)=(\lambda x_2)^2\boldsymbol{e}_1+(\lambda x_2)\boldsymbol{e}_2\\
             &=\lambda(\lambda x_2^2\boldsymbol{e}_1+x_2\boldsymbol{e}_2)\neq\lambda(x_2^2\boldsymbol{e}_1+x_2\boldsymbol{e}_2)=\lambda F_1(\boldsymbol{u}).
\end{align}Alltså är \displaystyle F_1(\lambda\boldsymbol{u})\neq\lambda F_1(\boldsymbol{u}). Man kan också visa att \displaystyle F_1 inte är additiv.
- 1. Vi visar först att \displaystyle F_2 är additiv. Låt \displaystyle \boldsymbol{u}_1=a_1\boldsymbol{e}_1+b_1\boldsymbol{e}_2 och \displaystyle \boldsymbol{u}=a_2\boldsymbol{e}_1+b_2\boldsymbol{e}_2. Då är 
\displaystyle \boldsymbol{u}_1+\boldsymbol{u}_2=(a_1+a_2)\boldsymbol{e}_1+(b_1+b_2)\boldsymbol{e}_2.  
- 1. Vi visar först att \displaystyle F_2 är additiv. Låt \displaystyle \boldsymbol{u}_1=a_1\boldsymbol{e}_1+b_1\boldsymbol{e}_2 och \displaystyle \boldsymbol{u}=a_2\boldsymbol{e}_1+b_2\boldsymbol{e}_2. Då är 
 
Vi får att
2. Vi visar nu att \displaystyle F_2 är homogen. Om \displaystyle \boldsymbol{u}=x_1\boldsymbol{e}_1+x_2\boldsymbol{e}_2, så är \displaystyle \lambda\boldsymbol{u}=\lambda x_1\boldsymbol{e}_1+\lambda x_2\boldsymbol{e}_2. Då är
Alltså är \displaystyle F_2 linjär.
- c) Eftersom
 
så är \displaystyle F_3 inte homogen och därmed inte linjär.
