16.1 Definition av linjär avbildning
SamverkanLinalgLIU
Rad 44: | Rad 44: | ||
<center><math>F(\underline{\boldsymbol{e}}X) = \underline{\boldsymbol{e}}Y = \underline{\boldsymbol{e}}\begin{pmatrix}x_1-x_2\\ 2x_2+3x_3\\ 2x_1-x_3\end{pmatrix}\mbox{.}</math></center> | <center><math>F(\underline{\boldsymbol{e}}X) = \underline{\boldsymbol{e}}Y = \underline{\boldsymbol{e}}\begin{pmatrix}x_1-x_2\\ 2x_2+3x_3\\ 2x_1-x_3\end{pmatrix}\mbox{.}</math></center> | ||
- | a) Undersök om <math>F</math> är linjär. b) Skriv avbildningen som en matrisprodukt, <math>Y=AX</math>, där <math>A</math> inte beror på <math>X</math>.c) Bestäm också basvektorernas bilder och visa hur dessa kan avläsas ur <math>A</math>. | + | a) Undersök om <math>F</math> är linjär. b) Skriv avbildningen som en matrisprodukt, <math>Y=AX</math>, där <math>A</math> inte beror på <math>X</math>. c) Bestäm också basvektorernas bilder och visa hur dessa kan avläsas ur <math>A</math>. |
{{#NAVCONTENT: | {{#NAVCONTENT: | ||
Svar|Svar till övning 4| | Svar|Svar till övning 4| |
Versionen från 19 september 2008 kl. 12.32
Läs textavsnitt 16.1 Definition av linjär avbildning Bild:Kap16 1.pdf
Du har nu läst definitionen på linjär avbildning och här kommer några övningar som testar om du har tagit till dig stoffet.
Övningar
1. Låt \displaystyle \boldsymbol{a} vara en fix vektor i rummet. Vilka av följande avbildningar på rummet är linjära?
2. Låt \displaystyle \{\boldsymbol{e}_1, \boldsymbol{e}_2\} vara en bas i \displaystyle {\bf R}^2. Avgör vilka av följande avbildningar är linjära.
- \displaystyle F_1(\boldsymbol{e}_1x_1+\boldsymbol{e}_2x_2)=x_2^2\boldsymbol{e}_1+x_2\boldsymbol{e}_2
- \displaystyle F_2(\underline{\boldsymbol{e}}X)=\underline{\boldsymbol{e}}\left(\begin{array}{c}{x_1+x_2}\\{x_1}\end{array}\right)
- \displaystyle F_3(\underline{\boldsymbol{e}}X)=\underline{\boldsymbol{e}}\left(\begin{array}{c}{x_1}\\{1}\end{array}\right)
3. Låt \displaystyle G vara en avbildning på rummet, som i basen \displaystyle \underline{\boldsymbol{e}} = \{\boldsymbol{e}_1, \boldsymbol{e}_2, \boldsymbol{e}_3\} ges av
Undersök om \displaystyle G är linjär.
4. Låt \displaystyle F vara en avbildning på rummet, som i basen \displaystyle \underline{\boldsymbol{e}} = \{\boldsymbol{e}_1, \boldsymbol{e}_2, \boldsymbol{e}_3\} ges av
a) Undersök om \displaystyle F är linjär. b) Skriv avbildningen som en matrisprodukt, \displaystyle Y=AX, där \displaystyle A inte beror på \displaystyle X. c) Bestäm också basvektorernas bilder och visa hur dessa kan avläsas ur \displaystyle A.
Reflektionsuppgifter
1. Beskriv för en kamrat vad som behöver göras för att visa
a) att en avbildning är linjär
b) att en avbildning inte är linjär