Lösning till övning 3
SamverkanLinalgLIU
(Skillnad mellan versioner)
Rad 2: | Rad 2: | ||
Vi behöver summan | Vi behöver summan | ||
<center><math>\boldsymbol{u}+\boldsymbol{v}=\underline{\boldsymbol{e}}\begin{pmatrix}{a_1}\\{b_1}\\{c_1}\end{pmatrix}+\underline{\boldsymbol{e}}\begin{pmatrix}{a_2}\\{b_2}\\{c_2}\end{pmatrix}=\underline{\boldsymbol{e}}\begin{pmatrix}{a_1+a_2}\\{b_1+b_2}\\{c_1+c_2}\end{pmatrix}</center></math> | <center><math>\boldsymbol{u}+\boldsymbol{v}=\underline{\boldsymbol{e}}\begin{pmatrix}{a_1}\\{b_1}\\{c_1}\end{pmatrix}+\underline{\boldsymbol{e}}\begin{pmatrix}{a_2}\\{b_2}\\{c_2}\end{pmatrix}=\underline{\boldsymbol{e}}\begin{pmatrix}{a_1+a_2}\\{b_1+b_2}\\{c_1+c_2}\end{pmatrix}</center></math> | ||
- | |||
och | och | ||
- | |||
<center><math> | <center><math> | ||
\lambda\boldsymbol{u}=\lambda\underline{\boldsymbol{e}}\begin{pmatrix}{a_1}\\{b_1}\\{c_1}\end{pmatrix}=\underline{\boldsymbol{e}}\begin{pmatrix}{\lambda | \lambda\boldsymbol{u}=\lambda\underline{\boldsymbol{e}}\begin{pmatrix}{a_1}\\{b_1}\\{c_1}\end{pmatrix}=\underline{\boldsymbol{e}}\begin{pmatrix}{\lambda | ||
Rad 10: | Rad 8: | ||
c_1}\end{pmatrix}. | c_1}\end{pmatrix}. | ||
</center></math> | </center></math> | ||
+ | |||
+ | Avbildningen <math>G</math> är inte linjär, ty | ||
+ | <center><math>1.\quad G(\boldsymbol{u}+\boldsymbol{v})\neq G(\boldsymbol{u})+G(\boldsymbol{v})\qquad\qquad 2.\quad G(\lambda\boldsymbol{u})\neq\lambda G(\boldsymbol{u}).</center></math> | ||
+ | T.ex., följer att | ||
+ | <center><math>G(\lambda\boldsymbol{u})=G\left(\underline{\boldsymbol{e}}\rvekt{\lambda a_1}{\lambda b_1}{\lambda c_1}\right) | ||
+ | =\underline{\boldsymbol{e\begin{pmatrix}{\lambda a_1\cdot\lambda c_1}\\{\lambda^2b_1^2}\\{\lambda b_1+\lambda c_1}}\end{pmatrix} | ||
+ | =\lambda\underline{\boldsymbol{e}}\begin{pmatrix}{\lambda a_1c_1}\\{\lambda b_1^2}\\{b_1+c_1}\end{pmatrix}\neq \lambda G(\boldsymbol{u}).</center></math> |
Versionen från 14 augusti 2008 kl. 19.29
Låt \displaystyle \boldsymbol{u}=\underline{\boldsymbol{e}}X_1=\underline{\boldsymbol{e}}\begin{pmatrix}{a_1}\\{b_1}\\{c_1}\end{pmatrix} och \displaystyle \boldsymbol{v}=\underline{\boldsymbol{e}}X_2=\underline{\boldsymbol{e}}\begin{pmatrix}{a_2}\\{b_2}\\{c_2}\end{pmatrix}. Vi behöver summan
och <center>\displaystyle \lambda\boldsymbol{u}=\lambda\underline{\boldsymbol{e}}\begin{pmatrix}{a_1}\\{b_1}\\{c_1}\end{pmatrix}=\underline{\boldsymbol{e}}\begin{pmatrix}{\lambda a_1}\\{\lambda b_1}\\{\lambda c_1}\end{pmatrix}.
Avbildningen \displaystyle G är inte linjär, ty
<center>\displaystyle 1.\quad G(\boldsymbol{u}+\boldsymbol{v})\neq G(\boldsymbol{u})+G(\boldsymbol{v})\qquad\qquad 2.\quad G(\lambda\boldsymbol{u})\neq\lambda G(\boldsymbol{u}).T.ex., följer att
<center>\displaystyle G(\lambda\boldsymbol{u})=G\left(\underline{\boldsymbol{e}}\rvekt{\lambda a_1}{\lambda b_1}{\lambda c_1}\right)
=\underline{\boldsymbol{e\begin{pmatrix}{\lambda a_1\cdot\lambda c_1}\\{\lambda^2b_1^2}\\{\lambda b_1+\lambda c_1}}\end{pmatrix}
=\lambda\underline{\boldsymbol{e}}\begin{pmatrix}{\lambda a_1c_1}\\{\lambda b_1^2}\\{b_1+c_1}\end{pmatrix}\neq \lambda G(\boldsymbol{u}).