Lösning till övning 3
SamverkanLinalgLIU
(Skillnad mellan versioner)
			  			                                                      
		          
			| Rad 1: | Rad 1: | ||
| - | Låt <math>\boldsymbol{u}=\underline{\boldsymbol{e}}X_1=\underline{\boldsymbol{e}}\begin{pmatrix}{a_1}\\{b_1}\\{c_1}\end{pmatrix}</math> och <math>\boldsymbol{v}=\underline{\boldsymbol{e}}{e}  | + | Låt <math>\boldsymbol{u}=\underline{\boldsymbol{e}}X_1=\underline{\boldsymbol{e}}\begin{pmatrix}{a_1}\\{b_1}\\{c_1}\end{pmatrix}</math> och <math>\boldsymbol{v}=\underline{\boldsymbol{e}}X_2=\underline{\boldsymbol{e}}\begin{pmatrix}{a_2}\\{b_2}\\{c_2}\end{pmatrix}</math>.  | 
| + | Vi behöver summan   | ||
| + | <center><math>\boldsymbol{u}+\boldsymbol{v}=\underline{\boldsymbol{e}}\rvekt{a_1}{b_1}{c_1}+\underline{\boldsymbol{e}}\begin{pmatrix}{a_2}\\{b_2}\\{c_2}\end{pmatrix}=\underline{\boldsymbol{e}}{e}\begin{pmatrix}{a_1+a_2}\\{b_1+b_2}\\{c_1+c_2}\end{pmatrix}</center></math>  | ||
| + | och  | ||
Versionen från 14 augusti 2008 kl. 18.38
Låt \displaystyle \boldsymbol{u}=\underline{\boldsymbol{e}}X_1=\underline{\boldsymbol{e}}\begin{pmatrix}{a_1}\\{b_1}\\{c_1}\end{pmatrix} och \displaystyle \boldsymbol{v}=\underline{\boldsymbol{e}}X_2=\underline{\boldsymbol{e}}\begin{pmatrix}{a_2}\\{b_2}\\{c_2}\end{pmatrix}. Vi behöver summan
