Lösning till övning 2

SamverkanLinalgLIU

(Skillnad mellan versioner)
Hoppa till: navigering, sök
Rad 1: Rad 1:
-
a) Vi visar att <math>F_1</math> inte är linjär genom att visa att <math>F_1</math> inte är homogen. Om <math>\boldsymbol{u}=x_1\boldsymbol{e}_1+x_2\boldsymbol{e}_2</math>, så är
+
# Vi visar att <math>F_1</math> inte är linjär genom att visa att <math>F_1</math> inte är homogen. Om <math>\boldsymbol{u}=x_1\boldsymbol{e}_1+x_2\boldsymbol{e}_2</math>, så är
<math>\lambda\boldsymbol{u}=(\lambda x_1)\boldsymbol{e}_1+(\lambda x_2)\boldsymbol{e}_2</math>. Då gäller att
<math>\lambda\boldsymbol{u}=(\lambda x_1)\boldsymbol{e}_1+(\lambda x_2)\boldsymbol{e}_2</math>. Då gäller att
<center><math>\begin{align}
<center><math>\begin{align}
Rad 8: Rad 8:
-
b)
+
# Låt
 +
 
 +
 
 +
# Låt

Versionen från 14 augusti 2008 kl. 11.07

  1. Vi visar att \displaystyle F_1 inte är linjär genom att visa att \displaystyle F_1 inte är homogen. Om \displaystyle \boldsymbol{u}=x_1\boldsymbol{e}_1+x_2\boldsymbol{e}_2, så är

\displaystyle \lambda\boldsymbol{u}=(\lambda x_1)\boldsymbol{e}_1+(\lambda x_2)\boldsymbol{e}_2. Då gäller att

\displaystyle \begin{align}
               F_1(\lambda\boldsymbol{u})&=F_1(\lambda x_1\boldsymbol{e}_1+\lambda x_2\boldsymbol{e}_2x_2)=(\lambda x_2)^2\boldsymbol{e}_1+(\lambda x_2)\boldsymbol{e}_2\\
                                &=\lambda(\lambda x_2^2\boldsymbol{e}_1+x_2\boldsymbol{e}_2)\neq\lambda(x_2^2\boldsymbol{e}_1+x_2\boldsymbol{e}_2)=\lambda F_1(\boldsymbol{u}).
\end{align}

Alltså är \displaystyle F_1(\lambda\boldsymbol{u})\neq\lambda F_1(\boldsymbol{u}). Man kan också visa att \displaystyle F_1 inte är additiv.


  1. Låt


  1. Låt