Lösning till övning 1
SamverkanLinalgLIU
(Skillnad mellan versioner)
Rad 2: | Rad 2: | ||
b) Av räknelagarna för skalärprodukt följer att <math>F</math> är linjär: | b) Av räknelagarna för skalärprodukt följer att <math>F</math> är linjär: | ||
- | \begin{align} F(\boldsymbol{u}_1+\boldsymbol{u}_2)&=((\boldsymbol{u}_1+\boldsymbol{u}_2)|\boldsymbol{a})\boldsymbol{a}=((\boldsymbol{u}_1|\boldsymbol{a})+(\boldsymbol{u}_2|\boldsymbol{a}))\boldsymbol{a}\\ &=(\boldsymbol{u}_1|\boldsymbol{a})\boldsymbol{a}+(\boldsymbol{u}_2|\boldsymbol{a}))\boldsymbol{a}=F(\boldsymbol{u}_1)+F(\boldsymbol{u}_2) | + | <math>\begin{align} F(\boldsymbol{u}_1+\boldsymbol{u}_2)&=((\boldsymbol{u}_1+\boldsymbol{u}_2)|\boldsymbol{a})\boldsymbol{a}=((\boldsymbol{u}_1|\boldsymbol{a})+(\boldsymbol{u}_2|\boldsymbol{a}))\boldsymbol{a}\\ &=(\boldsymbol{u}_1|\boldsymbol{a})\boldsymbol{a}+(\boldsymbol{u}_2|\boldsymbol{a}))\boldsymbol{a}=F(\boldsymbol{u}_1)+F(\boldsymbol{u}_2) |
- | \end{align} | + | \end{align}</math> |
Versionen från 14 augusti 2008 kl. 07.13
a) Se Exempel 16.10.
b) Av räknelagarna för skalärprodukt följer att \displaystyle F är linjär: \displaystyle \begin{align} F(\boldsymbol{u}_1+\boldsymbol{u}_2)&=((\boldsymbol{u}_1+\boldsymbol{u}_2)|\boldsymbol{a})\boldsymbol{a}=((\boldsymbol{u}_1|\boldsymbol{a})+(\boldsymbol{u}_2|\boldsymbol{a}))\boldsymbol{a}\\ &=(\boldsymbol{u}_1|\boldsymbol{a})\boldsymbol{a}+(\boldsymbol{u}_2|\boldsymbol{a}))\boldsymbol{a}=F(\boldsymbol{u}_1)+F(\boldsymbol{u}_2) \end{align}