Slaskövning2
SamverkanLinalgLIU
| Rad 22: | Rad 22: | ||
3.4 | 3.4 | ||
Bestäm en vektor som bildar lika stora vinklar med vektorerna <math>\boldsymbol{v}_1=\underline{\boldsymbol{e}}\begin{pmatrix}1\\1\\1\end{pmatrix}</math>, | Bestäm en vektor som bildar lika stora vinklar med vektorerna <math>\boldsymbol{v}_1=\underline{\boldsymbol{e}}\begin{pmatrix}1\\1\\1\end{pmatrix}</math>, | ||
| - | <math>\boldsymbol{v}_2=\underline{\boldsymbol{e}}\begin{pmatrix}1\\1\\0\end{pmatrix}</math> och <math>\boldsymbol{ | + | <math>\boldsymbol{v}_2=\underline{\boldsymbol{e}}\begin{pmatrix}1\\1\\0\end{pmatrix}</math> och <math>\boldsymbol{v}_3=\underline{\boldsymbol{e}}\begin{pmatrix}1\\0\\0\end{pmatrix}</math>. |
| + | |||
| + | |||
| + | |||
| + | 3.5 | ||
| + | Antag att <math>\boldsymbol{u}=\underline{\boldsymbol{e}}\begin{pmatrix}2\\-3\\6\end{pmatrix}</math> och <math>\boldsymbol{v}=\underline{\boldsymbol{e}}\begin{pmatrix}1\\2\\2\end{pmatrix}</math>. | ||
| + | |||
| + | # Bestäm projektionen av | ||
| + | # Bestäm | ||
| + | |||
| + | |||
| + | 3.6 | ||
| + | Låt | ||
Versionen från 6 mars 2010 kl. 18.09
3.1 Vi vet att \displaystyle |\boldsymbol{u}|=3, \displaystyle |\boldsymbol{v}|=4 och \displaystyle |\boldsymbol{u-v}|=5. Beräkna \displaystyle \boldsymbol{u}\cdot\boldsymbol{v}.
3.2
För vilka värden på \displaystyle a är vektorerna
\displaystyle \boldsymbol{u}=\underline{\boldsymbol{e}}\begin{pmatrix}a\\ -2\\1\end{pmatrix} och \displaystyle \boldsymbol{v}=\underline{\boldsymbol{e}}\begin{pmatrix}2a\\a\\-4\end{pmatrix} ortogonala?
Hej hopp
3.3
Bestäm en enhetsvektor i \displaystyle yz-planet som är vinkelrät mot vektorn \displaystyle \boldsymbol{u}=\underline{\boldsymbol{e}}\begin{pmatrix}1\\2\\-1\end{pmatrix}.
3.4
Bestäm en vektor som bildar lika stora vinklar med vektorerna \displaystyle \boldsymbol{v}_1=\underline{\boldsymbol{e}}\begin{pmatrix}1\\1\\1\end{pmatrix},
\displaystyle \boldsymbol{v}_2=\underline{\boldsymbol{e}}\begin{pmatrix}1\\1\\0\end{pmatrix} och \displaystyle \boldsymbol{v}_3=\underline{\boldsymbol{e}}\begin{pmatrix}1\\0\\0\end{pmatrix}.
3.5 Antag att \displaystyle \boldsymbol{u}=\underline{\boldsymbol{e}}\begin{pmatrix}2\\-3\\6\end{pmatrix} och \displaystyle \boldsymbol{v}=\underline{\boldsymbol{e}}\begin{pmatrix}1\\2\\2\end{pmatrix}.
- Bestäm projektionen av
- Bestäm
3.6
Låt
Hämtar...