Slask dugga1
SamverkanLinalgLIU
Rad 31: | Rad 31: | ||
Svar: t=-1 | Svar: t=-1 | ||
+ | |||
+ | 4A, För vilka a är vektorerna <math>\underline{\boldsymbol{e}}\begin{pmatrix}0\\1\\1\end{pmatrix}</math> |
Versionen från 14 oktober 2009 kl. 10.13
Underlag för dugga 1
1A. Låt \displaystyle \boldsymbol{v}=\underline{\boldsymbol{e}}\begin{pmatrix}0\\1\\2\end{pmatrix} . Dela upp vektorn \displaystyle \boldsymbol{u}=\underline{\boldsymbol{e}}\begin{pmatrix}2\\4\\3\end{pmatrix} som en summa \displaystyle \boldsymbol{u}=+\displaystyle \boldsymbol{u}_{\perp\boldsymbol{v}} .
Svaret skall ges i denna ordning.
Svar: \displaystyle \boldsymbol{v}=\underline{\boldsymbol{e}}\begin{pmatrix}0\\2\\4\end{pmatrix}+\underline{\boldsymbol{e}}\begin{pmatrix}2\\2\\-1\end{pmatrix}
1B. Låt \displaystyle \boldsymbol{v}=\underline{\boldsymbol{e}}\begin{pmatrix}-1\\2\\-3\end{pmatrix} . Dela upp vektorn \displaystyle \boldsymbol{u}=\underline{\boldsymbol{e}}\begin{pmatrix}-2\\3\\-2\end{pmatrix} som en summa \displaystyle \boldsymbol{u}=+\displaystyle \boldsymbol{u}_{\perp\boldsymbol{v}} .
Svaret skall ges i denna ordning.
Svar: \displaystyle \boldsymbol{v}=\underline{\boldsymbol{e}}\begin{pmatrix}-1\\2\\-3\end{pmatrix}+\underline{\boldsymbol{e}}\begin{pmatrix}-1\\1\\1\end{pmatrix}
2A. Bestäm alla vektorer som är ortogonala mot vektorerna \displaystyle \underline{\boldsymbol{e}}\begin{pmatrix}1\\1\\2\end{pmatrix} och \displaystyle \underline{\boldsymbol{e}}\begin{pmatrix}0\\1\\1\end{pmatrix} och har längden 1.
Svar: \displaystyle \pm\underline{\boldsymbol{e}}\frac{1}{\sqrt3}\begin{pmatrix}1\\1\\-1\end{pmatrix}
2B. Bestäm alla vektorer som är ortogonala mot vektorerna
Svar: \displaystyle \pm\underline{\boldsymbol{e}}\frac{1}{\sqrt14}\begin{pmatrix}-3\\1\\-2\end{pmatrix}
3A. För vilka t ligger punkterna
Svar: t=1
3B. För vilka t ligger punkterna
Svar: t=-1
4A, För vilka a är vektorerna