Lösning till övning 2

SamverkanLinalgLIU

(Skillnad mellan versioner)
Hoppa till: navigering, sök
Nuvarande version (13 oktober 2008 kl. 13.10) (redigera) (ogör)
 
(20 mellanliggande versioner visas inte.)
Rad 1: Rad 1:
-
a) Vi visar att <math>F_1</math> inte är linjär genom att visa att <math>F_1</math> inte är homogen. Om <math>\boldsymbol{u}=x_1\boldsymbol{e}_1+x_2\boldsymbol{e}_2</math>, så är
+
:*Vi visar att <math>F_1</math> inte är linjär genom att visa att <math>F_1</math> inte är homogen. Om <math>\boldsymbol{u}=x_1\boldsymbol{e}_1+x_2\boldsymbol{e}_2</math>, så är
<math>\lambda\boldsymbol{u}=(\lambda x_1)\boldsymbol{e}_1+(\lambda x_2)\boldsymbol{e}_2</math>. Då gäller att
<math>\lambda\boldsymbol{u}=(\lambda x_1)\boldsymbol{e}_1+(\lambda x_2)\boldsymbol{e}_2</math>. Då gäller att
-
<center><math>\begin{align}
+
<center><math>\begin{align}
-
F_1(\lambda\boldsymbol{u})&=F_1(\lambda x_1\boldsymbol{e}_1+\lambda x_2\boldsymbol{e}_2x_2)=(\lambda x_2)^2\boldsymbol{e}_1+(\lambda x_2)\boldsymbol{e}_2\\
+
F_1(\lambda\boldsymbol{u})&=F_1(\lambda x_1\boldsymbol{e}_1+\lambda x_2\boldsymbol{e}_2x_2)=(\lambda x_2)^2\boldsymbol{e}_1+(\lambda x_2)\boldsymbol{e}_2\\
-
&=\lambda(\lambda x_2^2\boldsymbol{e}_1+x_2\boldsymbol{e}_2)\neq\lambda(x_2^2\boldsymbol{e}_1+x_2\boldsymbol{e}_2)=\lambda F_1(\boldsymbol{u}).
+
&=\lambda(\lambda x_2^2\boldsymbol{e}_1+x_2\boldsymbol{e}_2)\neq\lambda(x_2^2\boldsymbol{e}_1+x_2\boldsymbol{e}_2)=\lambda F_1(\boldsymbol{u}).
-
\end{align}</math></center>
+
\end{align}</math></center>
Alltså är <math>F_1(\lambda\boldsymbol{u})\neq\lambda F_1(\boldsymbol{u})</math>. Man kan också visa att <math>F_1</math> inte är additiv.
Alltså är <math>F_1(\lambda\boldsymbol{u})\neq\lambda F_1(\boldsymbol{u})</math>. Man kan också visa att <math>F_1</math> inte är additiv.
-
 
+
:*1. Vi visar först att <math>F_2</math> är additiv. Låt <math>\boldsymbol{u}_1=a_1\boldsymbol{e}_1+b_1\boldsymbol{e}_2</math> och <math>\boldsymbol{u}=a_2\boldsymbol{e}_1+b_2\boldsymbol{e}_2</math>. Då är <center><math>\boldsymbol{u}_1+\boldsymbol{u}_2=(a_1+a_2)\boldsymbol{e}_1+(b_1+b_2)\boldsymbol{e}_2.</math></center>
-
 
+
Vi får att
-
b)
+
<center><math>F_2(\boldsymbol{u}_1+\boldsymbol{u}_2)=F_2((a_1+a_2)\boldsymbol{e}_1+(b_1+b_2)\boldsymbol{e}_2)=\underline{\boldsymbol{e}}\dbinom{(a_1+a_2)+(b_1+b_2)}{a_1+a_2}.</math></center>
 +
Av räknelagarna för matriser följer nu att <center><math>F(\boldsymbol{u}_1+\boldsymbol{u}_2)=\underline{\boldsymbol{e}}\dbinom{a_1+b_1}{a_1}+\underline{\boldsymbol{e}}\dbinom{a_2+b_2}{a_2} =F_2(\boldsymbol{u}_1)+F(\boldsymbol{u}_2).</math></center>
 +
2. Vi visar nu att <math>F_2</math> är homogen. Om <math>\boldsymbol{u}=x_1\boldsymbol{e}_1+x_2\boldsymbol{e}_2</math>, så är <math>\lambda\boldsymbol{u}=\lambda x_1\boldsymbol{e}_1+\lambda x_2\boldsymbol{e}_2</math>.
 +
Då är
 +
<center><math>F_2(\lambda\boldsymbol{u})=F(\lambda x_1\boldsymbol{e}_1+\lambda x_2\boldsymbol{e}_2)
 +
=\underline{\boldsymbol{e}}\dbinom{\lambda x_1+\lambda x_2}{\lambda x_1} =\lambda\underline{\boldsymbol{e}}\dbinom{x_1+x_2}{x_1}=\lambda F(\boldsymbol{u}).</math></center>
 +
Alltså är <math>F_2</math> linjär.
 +
:*c) Eftersom
 +
<center><math>F_3(\lambda\boldsymbol{u})=F_3(\lambda x_1\boldsymbol{e}_1+\lambda x_2\boldsymbol{e}_2)=\underline{\boldsymbol{e}}\begin{pmatrix}{\lambda x_1}\\{1}\end{pmatrix}\neq\lambda\begin{pmatrix}{x_1}\\{1}\end{pmatrix}
 +
=\lambda F_3(\boldsymbol{u}),</math></center>
 +
så är <math>F_3</math> inte homogen och därmed inte linjär.

Nuvarande version

  • Vi visar att \displaystyle F_1 inte är linjär genom att visa att \displaystyle F_1 inte är homogen. Om \displaystyle \boldsymbol{u}=x_1\boldsymbol{e}_1+x_2\boldsymbol{e}_2, så är

\displaystyle \lambda\boldsymbol{u}=(\lambda x_1)\boldsymbol{e}_1+(\lambda x_2)\boldsymbol{e}_2. Då gäller att

\displaystyle \begin{align}

F_1(\lambda\boldsymbol{u})&=F_1(\lambda x_1\boldsymbol{e}_1+\lambda x_2\boldsymbol{e}_2x_2)=(\lambda x_2)^2\boldsymbol{e}_1+(\lambda x_2)\boldsymbol{e}_2\\

             &=\lambda(\lambda x_2^2\boldsymbol{e}_1+x_2\boldsymbol{e}_2)\neq\lambda(x_2^2\boldsymbol{e}_1+x_2\boldsymbol{e}_2)=\lambda F_1(\boldsymbol{u}).
\end{align}

Alltså är \displaystyle F_1(\lambda\boldsymbol{u})\neq\lambda F_1(\boldsymbol{u}). Man kan också visa att \displaystyle F_1 inte är additiv.

  • 1. Vi visar först att \displaystyle F_2 är additiv. Låt \displaystyle \boldsymbol{u}_1=a_1\boldsymbol{e}_1+b_1\boldsymbol{e}_2 och \displaystyle \boldsymbol{u}=a_2\boldsymbol{e}_1+b_2\boldsymbol{e}_2. Då är
    \displaystyle \boldsymbol{u}_1+\boldsymbol{u}_2=(a_1+a_2)\boldsymbol{e}_1+(b_1+b_2)\boldsymbol{e}_2.

Vi får att

\displaystyle F_2(\boldsymbol{u}_1+\boldsymbol{u}_2)=F_2((a_1+a_2)\boldsymbol{e}_1+(b_1+b_2)\boldsymbol{e}_2)=\underline{\boldsymbol{e}}\dbinom{(a_1+a_2)+(b_1+b_2)}{a_1+a_2}.
Av räknelagarna för matriser följer nu att
\displaystyle F(\boldsymbol{u}_1+\boldsymbol{u}_2)=\underline{\boldsymbol{e}}\dbinom{a_1+b_1}{a_1}+\underline{\boldsymbol{e}}\dbinom{a_2+b_2}{a_2} =F_2(\boldsymbol{u}_1)+F(\boldsymbol{u}_2).

2. Vi visar nu att \displaystyle F_2 är homogen. Om \displaystyle \boldsymbol{u}=x_1\boldsymbol{e}_1+x_2\boldsymbol{e}_2, så är \displaystyle \lambda\boldsymbol{u}=\lambda x_1\boldsymbol{e}_1+\lambda x_2\boldsymbol{e}_2. Då är

\displaystyle F_2(\lambda\boldsymbol{u})=F(\lambda x_1\boldsymbol{e}_1+\lambda x_2\boldsymbol{e}_2) =\underline{\boldsymbol{e}}\dbinom{\lambda x_1+\lambda x_2}{\lambda x_1} =\lambda\underline{\boldsymbol{e}}\dbinom{x_1+x_2}{x_1}=\lambda F(\boldsymbol{u}).

Alltså är \displaystyle F_2 linjär.

  • c) Eftersom
\displaystyle F_3(\lambda\boldsymbol{u})=F_3(\lambda x_1\boldsymbol{e}_1+\lambda x_2\boldsymbol{e}_2)=\underline{\boldsymbol{e}}\begin{pmatrix}{\lambda x_1}\\{1}\end{pmatrix}\neq\lambda\begin{pmatrix}{x_1}\\{1}\end{pmatrix} =\lambda F_3(\boldsymbol{u}),

så är \displaystyle F_3 inte homogen och därmed inte linjär.