Lösning till övning 1

SamverkanLinalgLIU

(Skillnad mellan versioner)
Hoppa till: navigering, sök
Nuvarande version (14 augusti 2008 kl. 07.54) (redigera) (ogör)
 
(4 mellanliggande versioner visas inte.)
Rad 1: Rad 1:
-
a) Se Exempel 16.10.
+
a) 1. Vi visar först att <math>F</math> är additiv. Av egenskaperna för vektorprodukt följer att
 +
<center><math>F(\boldsymbol{u}_1+\boldsymbol{u}_2)=((\boldsymbol{u}_1+\boldsymbol{u}_2)\times\boldsymbol{v})=(\boldsymbol{u}_1\times\boldsymbol{v})+(\boldsymbol{u}_2\times\boldsymbol{v})=F(\boldsymbol{u}_1)+F(\boldsymbol{u}_2).</math></center>
 +
2. Vi visar nu att <math>F</math> är homogen:
 +
<center><math>F(\lambda\boldsymbol{u})=(\lambda\boldsymbol{u}\times\boldsymbol{v})=\lambda(\boldsymbol{u}\times\boldsymbol{v})=\lambda F(\boldsymbol{u}).</math></center>
 +
Alltså <math>F</math> är både additiv och homogen och därmed linjär.
b) Av räknelagarna för skalärprodukt följer att <math>F</math> är linjär:
b) Av räknelagarna för skalärprodukt följer att <math>F</math> är linjär:
-
<math>\begin{align} F(\boldsymbol{u}_1+\boldsymbol{u}_2)&=((\boldsymbol{u}_1+\boldsymbol{u}_2)|\boldsymbol{a})\boldsymbol{a}=((\boldsymbol{u}_1|\boldsymbol{a})+(\boldsymbol{u}_2|\boldsymbol{a}))\boldsymbol{a}\\ &=(\boldsymbol{u}_1|\boldsymbol{a})\boldsymbol{a}+(\boldsymbol{u}_2|\boldsymbol{a}))\boldsymbol{a}=F(\boldsymbol{u}_1)+F(\boldsymbol{u}_2)
+
<center><math>\begin{align} F(\boldsymbol{u}_1+\boldsymbol{u}_2)&=((\boldsymbol{u}_1+\boldsymbol{u}_2)|\boldsymbol{a})\boldsymbol{a}=((\boldsymbol{u}_1|\boldsymbol{a})+(\boldsymbol{u}_2|\boldsymbol{a}))\boldsymbol{a}\\ &=(\boldsymbol{u}_1|\boldsymbol{a})\boldsymbol{a}+(\boldsymbol{u}_2|\boldsymbol{a}))\boldsymbol{a}=F(\boldsymbol{u}_1)+F(\boldsymbol{u}_2)
-
\end{align}</math>
+
\end{align}</math></center>
 +
 
 +
och
 +
<center><math>F(\lambda\boldsymbol{u})=(\lambda\boldsymbol{u}|\boldsymbol{a})\boldsymbol{a}=\lambda(\boldsymbol{u}_1|\boldsymbol{a})\boldsymbol{a}=\lambda F(\boldsymbol{u}).</math></center>
 +
 
 +
c) <math>F</math> är ej linjär. Vi visar att <math>F</math> inte är additiv:
 +
<center><math>\begin{align} F(\boldsymbol{u}_1+\boldsymbol{u}_2)&=((\boldsymbol{u}_1+\boldsymbol{u}_2)|\boldsymbol{a})(\boldsymbol{u}_1+\boldsymbol{u}_2) =((\boldsymbol{u}_1+\boldsymbol{u}_2)|\boldsymbol{a})\boldsymbol{u}_1+((\boldsymbol{u}_1+\boldsymbol{u}_2)|\boldsymbol{a})\boldsymbol{u}_2\\ &=\underline{(\boldsymbol{u}_1|\boldsymbol{a})\boldsymbol{u}_1}+(\boldsymbol{u}_2|\boldsymbol{a})\boldsymbol{u}_1 +(\boldsymbol{u}_1|\boldsymbol{a})\boldsymbol{u}_2+\underline{\underline{(\boldsymbol{u}_2|\boldsymbol{a})\boldsymbol{u}_2}}\\ &=\underline{F(\boldsymbol{u}_1)}+\underline{\underline{F(\boldsymbol{u}_2)}}+(\boldsymbol{u}_2|\boldsymbol{a})\boldsymbol{u}_1+(\boldsymbol{u}_1|\boldsymbol{a})\boldsymbol{u}_2 \neq F(\boldsymbol{u}_1)+F(\boldsymbol{u}_2)
 +
\end{align}</math></center>
 +
 
 +
Man kan också visa att <math>F</math> inte är homogen.

Nuvarande version

a) 1. Vi visar först att \displaystyle F är additiv. Av egenskaperna för vektorprodukt följer att

\displaystyle F(\boldsymbol{u}_1+\boldsymbol{u}_2)=((\boldsymbol{u}_1+\boldsymbol{u}_2)\times\boldsymbol{v})=(\boldsymbol{u}_1\times\boldsymbol{v})+(\boldsymbol{u}_2\times\boldsymbol{v})=F(\boldsymbol{u}_1)+F(\boldsymbol{u}_2).

2. Vi visar nu att \displaystyle F är homogen:

\displaystyle F(\lambda\boldsymbol{u})=(\lambda\boldsymbol{u}\times\boldsymbol{v})=\lambda(\boldsymbol{u}\times\boldsymbol{v})=\lambda F(\boldsymbol{u}).

Alltså \displaystyle F är både additiv och homogen och därmed linjär.

b) Av räknelagarna för skalärprodukt följer att \displaystyle F är linjär:

\displaystyle \begin{align} F(\boldsymbol{u}_1+\boldsymbol{u}_2)&=((\boldsymbol{u}_1+\boldsymbol{u}_2)|\boldsymbol{a})\boldsymbol{a}=((\boldsymbol{u}_1|\boldsymbol{a})+(\boldsymbol{u}_2|\boldsymbol{a}))\boldsymbol{a}\\ &=(\boldsymbol{u}_1|\boldsymbol{a})\boldsymbol{a}+(\boldsymbol{u}_2|\boldsymbol{a}))\boldsymbol{a}=F(\boldsymbol{u}_1)+F(\boldsymbol{u}_2) \end{align}

och

\displaystyle F(\lambda\boldsymbol{u})=(\lambda\boldsymbol{u}|\boldsymbol{a})\boldsymbol{a}=\lambda(\boldsymbol{u}_1|\boldsymbol{a})\boldsymbol{a}=\lambda F(\boldsymbol{u}).

c) \displaystyle F är ej linjär. Vi visar att \displaystyle F inte är additiv:

\displaystyle \begin{align} F(\boldsymbol{u}_1+\boldsymbol{u}_2)&=((\boldsymbol{u}_1+\boldsymbol{u}_2)|\boldsymbol{a})(\boldsymbol{u}_1+\boldsymbol{u}_2) =((\boldsymbol{u}_1+\boldsymbol{u}_2)|\boldsymbol{a})\boldsymbol{u}_1+((\boldsymbol{u}_1+\boldsymbol{u}_2)|\boldsymbol{a})\boldsymbol{u}_2\\ &=\underline{(\boldsymbol{u}_1|\boldsymbol{a})\boldsymbol{u}_1}+(\boldsymbol{u}_2|\boldsymbol{a})\boldsymbol{u}_1 +(\boldsymbol{u}_1|\boldsymbol{a})\boldsymbol{u}_2+\underline{\underline{(\boldsymbol{u}_2|\boldsymbol{a})\boldsymbol{u}_2}}\\ &=\underline{F(\boldsymbol{u}_1)}+\underline{\underline{F(\boldsymbol{u}_2)}}+(\boldsymbol{u}_2|\boldsymbol{a})\boldsymbol{u}_1+(\boldsymbol{u}_1|\boldsymbol{a})\boldsymbol{u}_2 \neq F(\boldsymbol{u}_1)+F(\boldsymbol{u}_2) \end{align}

Man kan också visa att \displaystyle F inte är homogen.