Svar till övning 3.5
SamverkanLinalgLIU
(Skillnad mellan versioner)
(Ny sida: a) <math>\boldsymbol{u}_{\parallel\boldsymbol{v}} =\frac{8}{9}\begin{pmatrix}1\\2\\2\end{pmatrix},</math> <math>|\boldsymbol{u}_{\parallel\boldsymbol{v}}|=\frac{8}{3}</math>. \qquad\qquad b...) |
|||
(2 mellanliggande versioner visas inte.) | |||
Rad 1: | Rad 1: | ||
- | + | 1. <math>\boldsymbol{u}_{\parallel\boldsymbol{v}} | |
- | =\frac{8}{9}\begin{pmatrix}1\\2\\2\end{pmatrix},</math> | + | =\frac{8}{9}\begin{pmatrix}1\\2\\2\end{pmatrix},</math> <math>|\boldsymbol{u}_{\parallel\boldsymbol{v}}|=\frac{8}{3}</math>, |
- | <math>|\boldsymbol{u}_{\parallel\boldsymbol{v}}|=\frac{8}{3}</math> | + | |
- | + | 2. <math>\boldsymbol{v}_{\parallel\boldsymbol{u}}=\frac{8}{49}\begin{pmatrix}2\\-3\\6\end{pmatrix},</math> | |
- | + | ||
- | </math> | + | |
<math>|\boldsymbol{u}_{\parallel\boldsymbol{v}}|=\frac{8}{7}</math>. | <math>|\boldsymbol{u}_{\parallel\boldsymbol{v}}|=\frac{8}{7}</math>. |
Nuvarande version
1. \displaystyle \boldsymbol{u}_{\parallel\boldsymbol{v}} =\frac{8}{9}\begin{pmatrix}1\\2\\2\end{pmatrix}, \displaystyle |\boldsymbol{u}_{\parallel\boldsymbol{v}}|=\frac{8}{3},
2. \displaystyle \boldsymbol{v}_{\parallel\boldsymbol{u}}=\frac{8}{49}\begin{pmatrix}2\\-3\\6\end{pmatrix}, \displaystyle |\boldsymbol{u}_{\parallel\boldsymbol{v}}|=\frac{8}{7}.