16.9 Linjära avbildningar och basbyte
SamverkanLinalgLIU
Rad 54: | Rad 54: | ||
'''Reflektionsuppgifter''' | '''Reflektionsuppgifter''' | ||
+ | |||
+ | 1. Beskriv för en kamrat vad det är som påverkar utseendet på avbildningsmatrisen. | ||
+ | |||
+ | 2. Beskriv vad matriserna <math>A</math> resp <math>T</math> reglerar. Påverkar de varandra? I så fall hur? | ||
+ | |||
+ | 3. Hur beräknas kolonnerna i <math>A</math> resp <math>T</math>? |
Versionen från 20 november 2008 kl. 16.29
Läs textavsnitt 16.9 Linjära avbildningar och basbyte
Övningar
17.31. Den linjära avbildningen \displaystyle F:{\bf R}^2\rightarrow{\bf R}^2 har i basen \displaystyle \underline{\boldsymbol{e}}=\{\boldsymbol{e}_1, \boldsymbol{e}_2\} matrisen
Ange \displaystyle F:s matris \displaystyle A_{\boldsymbol{f}} i basen
Ange också sambandet mellan koordinaterna i de båda baserna.
17.32 Antag att \displaystyle \underline{\boldsymbol{e}}=\{\boldsymbol{e}_1, \boldsymbol{e}_2,\boldsymbol{e}_3\} är en bas för \displaystyle {\bf R}^3 och låt den linjära avbildningen
\displaystyle F:{\bf R}^3\rightarrow{\bf R}^3 definieras genom
Bestäm matrisen för \displaystyle F med avseende på basen \displaystyle \underline{\boldsymbol{f}}=\{\boldsymbol{e}_1,\boldsymbol{e}_2,\boldsymbol{e}_3\}, där
17.33. Låt \displaystyle \underline{\boldsymbol{e}}=\{\boldsymbol{e}_1, \boldsymbol{e}_2,\boldsymbol{e}_3\} var en bas i rummet och \displaystyle F en linjär avbildning med matrisen
i denna bas. Vad är matrisen för \displaystyle F i den bas \displaystyle \underline{\boldsymbol{f}} som ges av
\boldsymbol{f}_1=\boldsymbol{e}_2-\boldsymbol{e}_3,\qquad \boldsymbol{f}_2=\boldsymbol{e}_1-\boldsymbol{e}_2+\boldsymbol{e}_3,\qquad
\boldsymbol{f}_3=-\boldsymbol{e}_1+\boldsymbol{e}_2.
17.34. Avbildningen \displaystyle F har i basen \displaystyle \underline{\boldsymbol{e}} matrisen
Bestäm \displaystyle F:s matris i basen \displaystyle \underline{\boldsymbol{f}} om
\boldsymbol{f}_1=\boldsymbol{e}_1+\boldsymbol{e}_2,\qquad \boldsymbol{f}_2=\boldsymbol{e}_2+\boldsymbol{e}_3,\qquad
\boldsymbol{f}_3=\boldsymbol{e}_1.
Reflektionsuppgifter
1. Beskriv för en kamrat vad det är som påverkar utseendet på avbildningsmatrisen.
2. Beskriv vad matriserna \displaystyle A resp \displaystyle T reglerar. Påverkar de varandra? I så fall hur?
3. Hur beräknas kolonnerna i \displaystyle A resp \displaystyle T?