16.3 Projektion och spegling

SamverkanLinalgLIU

(Skillnad mellan versioner)
Hoppa till: navigering, sök
Rad 54: Rad 54:
Svar|Svar till övning 17.16|
Svar|Svar till övning 17.16|
Tips och lösning|Tips och lösning till övning 17.16}}
Tips och lösning|Tips och lösning till övning 17.16}}
 +
 +
'''Reflektionsuppgifter'''

Versionen från 14 november 2008 kl. 17.02

Läs textavsnitt 16.3 Projektion och Spegling

Övningar

17.10. Låt \displaystyle \underline{\boldsymbol{e}}=\{\boldsymbol{e}_1, \boldsymbol{e}_2\} vara en ON-bas i planet. Bestäm matrisen i basen \displaystyle \underline{\boldsymbol{e}} för följande linjära avbildningar:

  1. spegling i \displaystyle x_1-axeln.
  2. ortogonal projektion på linjen \displaystyle x_1+x_2=0.
  3. spegling i linjen \displaystyle x_1+x_2=0.
  4. ortogonal projektion på linjen \displaystyle 4x_1+3x_2=0.



17.11. Låt \displaystyle G vara ortogonal projektion på normalen till planet \displaystyle x_1+x_2+x_3=0 i \displaystyle {\bf E}^3. Ange \displaystyle G:s matris i standardbasen.



17.12. Låt \displaystyle F vara ortogonal projektion på planet \displaystyle x_1+x_2+x_3=0 i \displaystyle {\bf E}^3. Ange \displaystyle F:s matris i standardbasen.



17.13. Låt \displaystyle F vara spegling i planet \displaystyle x_1+x_2+x_3=0 i \displaystyle {\bf E}^3. Ange \displaystyle F:s matris i standardbasen.


17.14. Låt \displaystyle W=[(2,-2,1)^t,(2,1,-2)^t] i \displaystyle {\bf E}^3. Bestäm matrisen för speglingen \displaystyle S i \displaystyle W.


17.15. Låt \displaystyle W=[(1,1,1,1)^t,(1,-1,1,-1)^t] i \displaystyle {\bf E}^4. Bestäm matrisen för den ortogonala projektionen \displaystyle F\displaystyle W, dvs projektion på \displaystyle W parallellt med \displaystyle W^{\perp}.


17.16. Låt \displaystyle W=\{\boldsymbol{x}\in\bf{ E}^4:\ x_1+x_2+x_3+x_4=0\}. Bestäm matrisen för den ortogonala projektionen \displaystyle P\displaystyle W.


Reflektionsuppgifter