16. Linjära avbildningar

SamverkanLinalgLIU

(Skillnad mellan versioner)
Hoppa till: navigering, sök
Rad 48: Rad 48:
Lösning|Lösning till övning 17.21}}
Lösning|Lösning till övning 17.21}}
-
5. Hej igen nu testar vi.
 
-
{{#NAVCONTENT:
 
-
Svar|Svar till övning 5|
 
-
Tips 1|Tips 1 till övning 17.21|
 
-
Tips 2|Tips 2 till övning 17.21|
 
-
Tips 3|Tips 3 till övning 17.21|
 
-
Lösning|Lösning till övning 17.21}}
 
=== Matrisframställning ===
=== Matrisframställning ===
Rad 63: Rad 56:
1. Låt <math>\{\boldsymbol{e}_1, \boldsymbol{e}_2\}</math> vara en bas i <math>{\bf R}^2</math>. Bestäm matrisen för den linjära avbildningen <math>F:{\bf R}^2\rightarrow:{\bf R}^2</math>, sådan att
1. Låt <math>\{\boldsymbol{e}_1, \boldsymbol{e}_2\}</math> vara en bas i <math>{\bf R}^2</math>. Bestäm matrisen för den linjära avbildningen <math>F:{\bf R}^2\rightarrow:{\bf R}^2</math>, sådan att
-
<center><math>F(3\boldsymbol{e}_1+4\boldsymbol{e}_2)=5\boldsymbol{e}_1+6\boldsymbol{e}_2,</math></center>
+
<center><math>F(3\boldsymbol{e}_1+4\boldsymbol{e}_2)=5\boldsymbol{e}_1+6\boldsymbol{e}_2,\qquad F(2\boldsymbol{e}_1+3\boldsymbol{e}_2)=7\boldsymbol{e}_1+8\boldsymbol{e}_2</math></center>
{{#NAVCONTENT:
{{#NAVCONTENT:
Svar|Svar till övning 3|
Svar|Svar till övning 3|

Versionen från 27 juni 2008 kl. 18.14

Innehåll

Definition av linjär avbildning

Läs textavsnittet om definition av linjär avbildning Bild:Kap16 1.pdf

Du har nu läst definitionen på linjär avbildning och här kommer några övningar som testar om du har tagit till dig stoffet.

Övningar

1. Låt \displaystyle \{\boldsymbol{e}_1, \boldsymbol{e}_2\} vara en bas i \displaystyle {\bf R}^2. Avgör vilka av följande avbildningar är linjära.

  • \displaystyle F_1(\boldsymbol{e}_1x_1+\boldsymbol{e}_2x_2)=x_2^2\boldsymbol{e}_1+x_2\boldsymbol{e}_2
  • \displaystyle F_2(\underline{\boldsymbol{e}}X)=\underline{\boldsymbol{e}}\left(\begin{array}{c}{x_1+x_2}\\{x_1}\end{array}\right)
  • \displaystyle F_3(\underline{\boldsymbol{e}}X)=\underline{\boldsymbol{e}}\left(\begin{array}{c}{x_1}\\{1}\end{array}\right)

2. Låt \displaystyle F och \displaystyle G vara avbildningar på rummet, som i basen \displaystyle \underline{\boldsymbol{e}} = \{\boldsymbol{e}_1, \boldsymbol{e}_2, \boldsymbol{e}_3\} ges av

\displaystyle F(\underline{\boldsymbol{e}}X) = \underline{\boldsymbol{e}}Y = \underline{\boldsymbol{e}}\begin{pmatrix}x_1-x_2\\ 2x_2+3x_3\\ 2x_1-x_3\end{pmatrix},\qquad G(\underline{\boldsymbol{e}}X) = \underline{\boldsymbol{e}}\begin{pmatrix}x_1x_2\\ x_2^2\\ x_2+x_3\end{pmatrix}\,\mbox{.}

Undersök om \displaystyle F är linjär. Skriv avbildningen som en matrisprodukt, \displaystyle Y=AX, där \displaystyle A inte beror på \displaystyle X. Bestäm också basvektorernas bilder och visa hur dessa kan avläsas ur \displaystyle A. Undersök om \displaystyle G är linjär.

3. Låt \displaystyle \boldsymbol{a} vara en fix vektor i rummet. Vilka av följande avbildningar på rummet är linjära?

\displaystyle {\rm a)}\ F(\boldsymbol{u})=(\boldsymbol{u}|\boldsymbol{a})\boldsymbol{a}\qquad{\rm b)}\ F(\boldsymbol{u})=\boldsymbol{u}\times\boldsymbol{a}\qquad {\rm c)}\ F(\boldsymbol{u})=(\boldsymbol{u}|\boldsymbol{a})\boldsymbol{u}.


4. Hej



Matrisframställning

Läs textavsnittet om definition av matrisframställning för en linjär avbildning Bild:Kap16 2.pdf


1. Låt \displaystyle \{\boldsymbol{e}_1, \boldsymbol{e}_2\} vara en bas i \displaystyle {\bf R}^2. Bestäm matrisen för den linjära avbildningen \displaystyle F:{\bf R}^2\rightarrow:{\bf R}^2, sådan att

\displaystyle F(3\boldsymbol{e}_1+4\boldsymbol{e}_2)=5\boldsymbol{e}_1+6\boldsymbol{e}_2,\qquad F(2\boldsymbol{e}_1+3\boldsymbol{e}_2)=7\boldsymbol{e}_1+8\boldsymbol{e}_2



Du ska nu testa rimligheten i svaret. Avbildningsmatrisen skriver Du i Maple enligt

> A:=matrix(2,2,[-13,11,-14,12]);


Den första urbilden skriver Du som

> u1:=matrix(2,1,[3,4]);

Använd nu multiplikations kommandot för att bestämma första bilden

> v1=multiply(A,u1);

Räknar Maple rätt?

Kontrollera nu den andra urbilden!



\displaystyle \begin{array}{l@{}c@{}r} z & = & a \\ f(x,y,z) & = & x + y + z\end{array}

Projektion och spegling

Plan rotation

Rotation i rummet

Sammansatta linjära avbildningar

Nollrum, Värderum och dimensionssatsen

Basbyte

Linjära avbildningar och basbyte

Projektioner och speglingar med basbyte

Rotationer