16. Linjära avbildningar
SamverkanLinalgLIU
m (Återställt redigeringar av Geoba (användardiskussion); återställd till senaste version av Oweka) |
|||
Rad 1: | Rad 1: | ||
- | + | === Definition av linjär avbildning === | |
- | [[ | + | Läs textavsnittet om definition av linjär avbildning [[Bild:Kap16_1.pdf||center]] |
- | + | Du har nu läst definitionen på linjär avbildning och här kommer några övningar som testar om du har tagit till dig stoffet. | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
'''Övningar''' | '''Övningar''' | ||
- | 1. | + | 1. Låt <math>F</math> och <math>G</math> vara avbildningar på rummet, som i basen <math>\underline{\boldsymbol{e}} = \{\boldsymbol{e}_1, \boldsymbol{e}_2, \boldsymbol{e}_3\}</math> ges av |
- | < | + | |
- | + | ||
- | + | ||
- | + | ||
- | </math> | + | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
+ | <center><math>F(\underline{\boldsymbol{e}}X) = \underline{\boldsymbol{e}}Y = \underline{\boldsymbol{e}}\begin{pmatrix}x_1-x_2\\ 2x_2+3x_3\\ 2x_1-x_3\end{pmatrix},\qquad G(\underline{\boldsymbol{e}}X) = \underline{\boldsymbol{e}}\begin{pmatrix}x_1x_2\\ x_2^2\\ x_2+x_3\end{pmatrix}\,\mbox{.}</math></center> | ||
- | + | Undersök om <math>F</math> är linjär. Skriv avbildningen som en matrisprodukt, <math>Y=AX</math>, där <math>A</math> inte beror på <math>X</math>. Bestäm också basvektorernas bilder och visa hur dessa kan avläsas ur <math>A</math>. Undersök om <math>G</math> är | |
- | <math> | + | linjär.{{#NAVCONTENT: |
- | {{#NAVCONTENT: | + | Svar|Svar till övning 1| |
- | Svar|Svar till övning | + | Tips 1|Tips 1 till övning 1| |
- | Tips 1|Tips 1 till övning | + | Tips 2|Tips 2 till övning 1| |
- | Tips 2|Tips 2 till övning | + | Tips 3|Tips 3 till övning 1| |
- | Tips 3|Tips 3 till övning | + | Lösning|Lösning till övning 1}} |
- | Lösning|Lösning till övning | + | |
- | === Sammansatta linjära avbildningar === | ||
- | Läs textavsnittet om definition av matrisframställning för en linjär avbildning [[Bild:Kap16_6.pdf||center]] | ||
- | + | 2. Låt <math>\boldsymbol{a}</math> vara en fix vektor i rummet. Vilka av följande avbildningar på rummet är linjära? | |
- | + | <center><math>{\rm a)}\ F(\boldsymbol{u})=(\boldsymbol{u}|\boldsymbol{a})\boldsymbol{a}\qquad{\rm b)}\ F(\boldsymbol{u})=\boldsymbol{u}\times\boldsymbol{a}\qquad | |
- | + | {\rm c)}\ F(\boldsymbol{u})=(\boldsymbol{u}|\boldsymbol{a})\boldsymbol{u}.</math></center> | |
- | + | ||
- | + | ||
{{#NAVCONTENT: | {{#NAVCONTENT: | ||
- | Svar|Svar till övning | + | Svar|Svar till övning 2| |
- | Tips 1|Tips 1 till övning | + | Tips 1|Tips 1 till övning 2| |
- | Tips 2|Tips 2 till övning | + | Tips 2|Tips 2 till övning 2| |
- | Tips 3|Tips 3 till övning | + | Tips 3|Tips 3 till övning 2| |
- | Lösning|Lösning till övning | + | Lösning|Lösning till övning 2}} |
- | + | 3. Låt <math>\{\boldsymbol{e}_1, \boldsymbol{e}_2\}</math> vara en bas i <math>{\bf R}^2</math>. Avgör vilka av följande avbildningar är linjära. | |
- | + | :*<math>F_1(\boldsymbol{e}_1x_1+\boldsymbol{e}_2x_2)=x_2^2\boldsymbol{e}_1+x_2\boldsymbol{e}_2</math> | |
- | + | :*<math>F_2(\underline{\boldsymbol{e}}X)=\underline{\boldsymbol{e}}\left(\begin{array}{c}{x_1+x_2}\\{x_1}\end{array}\right)</math> | |
- | + | :*<math>F_3(\underline{\boldsymbol{e}}X)=\underline{\boldsymbol{e}}\left(\begin{array}{c}{x_1}\\{1}\end{array}\right)</math>{{#NAVCONTENT: | |
- | + | Svar|Svar till övning 3| | |
- | + | ||
- | + | ||
- | + | ||
- | < | + | |
- | + | ||
- | {{#NAVCONTENT: | + | |
- | Svar|Svar till övning | + | |
Tips 1|Tips 1 till övning 17.21| | Tips 1|Tips 1 till övning 17.21| | ||
Tips 2|Tips 2 till övning 17.21| | Tips 2|Tips 2 till övning 17.21| | ||
Rad 71: | Rad 44: | ||
Lösning|Lösning till övning 17.21}} | Lösning|Lösning till övning 17.21}} | ||
- | + | 4. Hej | |
- | + | ||
- | + | ||
{{#NAVCONTENT: | {{#NAVCONTENT: | ||
- | Svar|Svar till övning | + | Svar|Svar till övning 4| |
Tips 1|Tips 1 till övning 17.21| | Tips 1|Tips 1 till övning 17.21| | ||
Tips 2|Tips 2 till övning 17.21| | Tips 2|Tips 2 till övning 17.21| | ||
Rad 81: | Rad 52: | ||
Lösning|Lösning till övning 17.21}} | Lösning|Lösning till övning 17.21}} | ||
- | + | 5. Hej igen nu testar vi. | |
- | + | ||
- | + | ||
{{#NAVCONTENT: | {{#NAVCONTENT: | ||
Svar|Svar till övning 5| | Svar|Svar till övning 5| | ||
Rad 91: | Rad 60: | ||
Lösning|Lösning till övning 17.21}} | Lösning|Lösning till övning 17.21}} | ||
- | + | === Matrisframställning === | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | 5. Låt <math>M_{22} </math> vara vektorrummet av alla <math>2\times</math> matriser. Definiera avbildningen <math>F</math> genom | ||
- | <center><math> F(A)=\left(\begin{array}{rr} 1&1 \\0 &0 \end{array}\right)A+A\left(\begin{array}{rr} 0&0 \\ 1& 1\end{array}\right).</math></center> | ||
- | # Visa att <math>F</math> är en linjär avbildning på <math>M_{22} </math>. | ||
- | # Bestäm dim <math>N(F)</math> samt en bas i <math>N(F)</math> | ||
- | {{#NAVCONTENT: | ||
- | Svar|Svar till övning 5| | ||
- | Tips 1|Tips 1 till övning 17.21| | ||
- | Tips 2|Tips 2 till övning 17.21| | ||
- | Tips 3|Tips 3 till övning 17.21| | ||
- | Lösning|Lösning till övning 17.21}} | ||
- | + | Läs textavsnittet om definition av matrisframställning för en linjär avbildning [[Bild:Kap16_2.pdf||center]] | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | 7. Den linjära avbildningen <math>F:{\bf R}^3\rightarrow{\bf R}^3</math> ges i en given bas av matrisen | ||
- | <center><math> \left(\begin{array}{ccc} 1& a+3& a\\ a& 3a+1& 1\\ 2& 4a+4& a+1\end{array}\right),\qquad a\in{\bf R} | ||
- | </math></center> | ||
- | Ange alla reella tal <math>a</math> sådana att dim <math>V(F)=1</math> och ange i så fall en bas för <math>V(F)</math>. | ||
- | {{#NAVCONTENT: | ||
- | Svar|Svar till övning 5| | ||
- | Tips 1|Tips 1 till övning 17.21| | ||
- | Tips 2|Tips 2 till övning 17.21| | ||
- | Tips 3|Tips 3 till övning 17.21| | ||
- | Lösning|Lösning till övning 17.21}} | ||
- | + | 1. Gör övning 17.22. | |
- | + | [[Bild:o_linavb.pdf||center]] | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | 9. Bestäm matrisen till den linjära avbildningen | ||
- | <math>F:{\bf R}^3\rightarrow{\bf R}^3</math> | ||
- | som i basen <math>\underline{\boldsymbol{e}}=\{\boldsymbol{e}_1,\boldsymbol{e}_2,\boldsymbol{e}_3\}</math> | ||
- | avbildar de tre vektorerna <math>(1,2,1)^t</math>, <math>(1,1,-1)^t</math> och <math>(-1,0,1)^t</math> på | ||
- | <math>(1,3,1)^t</math>, <math>(3,1,2)^t</math> resp. <math>(5,-1,3)^t</math>. Bestäm också <math>V(F)</math>. | ||
- | {{#NAVCONTENT: | ||
- | Svar|Svar till övning 5| | ||
- | Tips 1|Tips 1 till övning 17.21| | ||
- | Tips 2|Tips 2 till övning 17.21| | ||
- | Tips 3|Tips 3 till övning 17.21| | ||
- | Lösning|Lösning till övning 17.21}} | ||
+ | Du ska nu testa rimligheten i svaret. Avbildningsmatrisen skriver Du i Maple enligt | ||
- | = | + | <pre> |
+ | > A:=matrix(2,2,[-13,11,-14,12]); | ||
- | Läs textavsnittet om definition av matrisframställning för en linjär avbildning [[Bild:Kap16_8.pdf||center]] | ||
- | + | Den första urbilden skriver Du som | |
- | + | > u1:=matrix(2,1,[3,4]); | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | Använd nu multiplikations kommandot för att bestämma första bilden | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
+ | > v1=multiply(A,u1); | ||
+ | </pre> | ||
+ | Räknar Maple rätt? | ||
+ | Kontrollera nu den andra urbilden! | ||
- | |||
- | === Linjära avbildningar och basbyte === | ||
- | |||
- | Läs textavsnittet om definition av matrisframställning för en linjär avbildning [[Bild:Kap16_9.pdf||center]] | ||
- | |||
- | '''Övningar''' | ||
- | |||
- | 1. Den linjära avbildningen <math>F:{\bf R}^2\rightarrow{\bf R}^2</math> har i basen <math>\underline{\boldsymbol{e}}=\{\boldsymbol{e}_1, \boldsymbol{e}_2\}</math> har matrisen | ||
- | <center><math>A_{\boldsymbol{e}}=\frac{1}{2}\left(\begin{array}{rr} 1& 1\\ -1& 1\end{array}\right). </math></center> | ||
- | Ange <math>F</math>:s matris <math>A_{\boldsymbol{f}}</math> i basen | ||
- | <center><math>\boldsymbol{f}_1=\boldsymbol{e}_1+\boldsymbol{e}_2,\qquad | ||
- | \boldsymbol{f}_2=-\boldsymbol{e}_1+\boldsymbol{e}_2.</math></center> | ||
- | Ange också sambandet mellan koordinaterna i de båda baserna. | ||
- | {{#NAVCONTENT: | ||
- | Svar|Svar till övning 5| | ||
- | Tips 1|Tips 1 till övning 17.21| | ||
- | Tips 2|Tips 2 till övning 17.21| | ||
- | Tips 3|Tips 3 till övning 17.21| | ||
- | Lösning|Lösning till övning 17.21}} | ||
- | |||
- | 2. Låt <math>\underline{\boldsymbol{e}}=\{\boldsymbol{e}_1, \boldsymbol{e}_2,\boldsymbol{e}_3\}</math> var en bas i rummet och <math>F</math> en linjär avbildning med matrisen | ||
- | <center><math>A=\left(\begin{array}{rrr} 2& 0& 1\\ 1& -1& 0\\ 2& 2& 1\end{array}\right). </math></center> | ||
- | i denna bas. Vad är matrisen för <math>F</math> i den bas <math>\underline{\boldsymbol{f}}</math> som ges av | ||
- | <center><math> | ||
- | \boldsymbol{f}_1=\boldsymbol{e}_2-\boldsymbol{e}_3,\qquad | ||
- | \boldsymbol{f}_2=\boldsymbol{e}_1-\boldsymbol{e}_2+\boldsymbol{e}_3,\qquad | ||
- | \boldsymbol{f}_3=-\boldsymbol{e}_1+\boldsymbol{e}_2.</math></center> | ||
- | {{#NAVCONTENT: | ||
- | Svar|Svar till övning 5| | ||
- | Tips 1|Tips 1 till övning 17.21| | ||
- | Tips 2|Tips 2 till övning 17.21| | ||
- | Tips 3|Tips 3 till övning 17.21| | ||
- | Lösning|Lösning till övning 17.21}} | ||
- | |||
- | 3. Avbildningen <math>F</math> har i basen <math>\underline{\boldsymbol{e}}</math> matrisen | ||
- | <center><math>A=\left(\begin{array}{rrr} 2& 0& 1\\ 1& -1& 0\\ 2& 2& 1\end{array}\right). </math></center> | ||
- | Bestäm <math>F</math>:s matris i basen <math>\underline{\boldsymbol{f}}</math> om | ||
- | <center><math> | ||
- | \boldsymbol{f}_1=\boldsymbol{e}_1+\boldsymbol{e}_2,\qquad | ||
- | \boldsymbol{f}_2=\boldsymbol{e}_2+\boldsymbol{e}_3,\qquad | ||
- | \boldsymbol{f}_3=\boldsymbol{e}_1.</math></center> | ||
- | {{#NAVCONTENT: | ||
- | Svar|Svar till övning 5| | ||
- | Tips 1|Tips 1 till övning 17.21| | ||
- | Tips 2|Tips 2 till övning 17.21| | ||
- | Tips 3|Tips 3 till övning 17.21| | ||
- | Lösning|Lösning till övning 17.21}} | ||
- | |||
- | 4. Antag att <math>\underline{\boldsymbol{e}}=\{\boldsymbol{e}_1, \boldsymbol{e}_2,\boldsymbol{e}_3\}</math> är en bas i <math>{\bf R}^3</math> och låt den linjära avbildningen | ||
- | <math>F:{\bf R}^3\rightarrow{\bf R}^3</math> definieras genom | ||
- | <center><math> | ||
- | F(\boldsymbol{e}_1)=\boldsymbol{e}_1+2\boldsymbol{e}_3,\qquad | ||
- | F(\boldsymbol{e}_2)=\boldsymbol{e}_1+3\boldsymbol{e}_2+\boldsymbol{e}_3\qquad | ||
- | F(\boldsymbol{e}_3)=2\boldsymbol{e}_2+\boldsymbol{e}_3.</math></center> | ||
- | Bestäm matrisen till <math>F</math> med avseende på basen | ||
- | <math>\underline{\boldsymbol{f}}=\{\boldsymbol{f}_1, \boldsymbol{f}_2,\boldsymbol{f}_3\}</math>, där | ||
- | <center><math> | ||
- | \boldsymbol{f}_1=\boldsymbol{e}_1\qquad | ||
- | \boldsymbol{f}_2=\boldsymbol{e}_1+\boldsymbol{e}_2,\qquad | ||
- | \boldsymbol{f}_3=\boldsymbol{e}_1+\boldsymbol{e}_2+\boldsymbol{e}_3.</math></center> | ||
- | {{#NAVCONTENT: | ||
- | Svar|Svar till övning 5| | ||
- | Tips 1|Tips 1 till övning 17.21| | ||
- | Tips 2|Tips 2 till övning 17.21| | ||
- | Tips 3|Tips 3 till övning 17.21| | ||
- | Lösning|Lösning till övning 17.21}} | ||
- | |||
- | 5. Visa att matriserna | ||
- | <center><math> | ||
- | A=\left(\begin{array}{rrr} 0& -1& 0\\ 1& 0& 1\\ 1& 2& 3\end{array}\right)\qquad och\qquad | ||
- | B=\left(\begin{array}{rrr} 1& 0& 1\\ 1& 2& 0\\ -1& 0& 3\end{array}\right)</math></center> | ||
- | ej kan representera samma linjära avbildning <math>F:{\bf R}^3\rightarrow{\bf R}^3</math>. | ||
- | {{#NAVCONTENT: | ||
- | Svar|Svar till övning 5| | ||
- | Tips 1|Tips 1 till övning 17.21| | ||
- | Tips 2|Tips 2 till övning 17.21| | ||
- | Tips 3|Tips 3 till övning 17.21| | ||
- | Lösning|Lösning till övning 17.21}} | ||
+ | <math> \begin{array}{l@{}c@{}r} z & = & a \\ f(x,y,z) & = & x + y + z\end{array}</math> | ||
+ | === Projektion och spegling === | ||
+ | === Plan rotation === | ||
+ | === Rotation i rummet === | ||
+ | === Sammansatta linjära avbildningar === | ||
+ | === Nollrum, Värderum och dimensionssatsen === | ||
+ | === Basbyte === | ||
+ | === Linjära avbildningar och basbyte === | ||
=== Projektioner och speglingar med basbyte === | === Projektioner och speglingar med basbyte === | ||
- | |||
- | Läs textavsnittet om definition av matrisframställning för en linjär avbildning [[Bild:Kap16_10.pdf||center]] | ||
- | |||
- | '''Övningar''' | ||
- | |||
- | 1. Låt <math>\underline{\boldsymbol{e}}=\{\boldsymbol{e}_1, \boldsymbol{e}_2\}</math> vara en ON-bas i planet. | ||
- | Inför en ny bas <math>\underline{\boldsymbol{f}}=\{\boldsymbol{f}_1, \boldsymbol{f}_2\}</math> | ||
- | genom | ||
- | <center><math> | ||
- | \left\{\begin{array}{lcl}\boldsymbol{f}_1&=&\frac{1}{\sqrt5}(\boldsymbol{e}_1+2\boldsymbol{e}_2)\\ \boldsymbol{f}_2&=&\frac{1}{\sqrt5}(2\boldsymbol{e}_1-\boldsymbol{e}_2)\end{array}\right. | ||
- | </math></center> | ||
- | Låt <math>F</math> vara ortogonal projektion på linjen <math>x_1+2x_2=0</math>. Ange <math>F</math>:s matris i basen | ||
- | <math>\underline{\boldsymbol{f}}</math> | ||
- | och beräkna med hjälp av bassambandet <math>F</math>:s matris i basen <math>\underline{\boldsymbol{e}}</math>. | ||
- | {{#NAVCONTENT: | ||
- | Svar|Svar till övning 5| | ||
- | Tips 1|Tips 1 till övning 17.21| | ||
- | Tips 2|Tips 2 till övning 17.21| | ||
- | Tips 3|Tips 3 till övning 17.21| | ||
- | Lösning|Lösning till övning 17.21}} | ||
- | |||
- | 2. Låt <math>\underline{\boldsymbol{e}}=\{\boldsymbol{e}_1, \boldsymbol{e}_2\}</math> vara en ON-bas i planet. | ||
- | Inför en ny bas <math>\underline{\boldsymbol{f}}=\{\boldsymbol{f}_1, \boldsymbol{f}_2\}</math> | ||
- | genom | ||
- | <center><math> | ||
- | \left\{\begin{array}{lcl}\boldsymbol{f}_1&=&\frac{1}{\sqrt5}(\boldsymbol{e}_1+2\boldsymbol{e}_2)\\ \boldsymbol{f}_2&=&\frac{1}{\sqrt5}(2\boldsymbol{e}_1-\boldsymbol{e}_2)\end{array}\right. | ||
- | </math></center> | ||
- | Låt <math>F</math> vara spegling i linjen <math>x_1+2x_2=0</math>. Ange <math>F</math>:s matris i basen | ||
- | <math>\underline{\boldsymbol{f}}</math> | ||
- | och beräkna med hjälp av bassambandet <math>F</math>:s matris i basen <math>\underline{\boldsymbol{e}}</math>. | ||
- | {{#NAVCONTENT: | ||
- | Svar|Svar till övning 5| | ||
- | Tips 1|Tips 1 till övning 17.21| | ||
- | Tips 2|Tips 2 till övning 17.21| | ||
- | Tips 3|Tips 3 till övning 17.21| | ||
- | Lösning|Lösning till övning 17.21}} | ||
- | |||
- | 3. Låt <math>\underline{\boldsymbol{e}}</math> vara en ON-bas i rummet och låt <math>F</math> vara en ortogonal projektion på planet | ||
- | <math>x_1+x_2+x_3=0</math>. Välj en lämplig ny bas <math>\underline{\boldsymbol{f}}</math> och ange <math>F</math>:s matris i denna. Beräkna med hjälp av bassambanden matrisen i basen | ||
- | <math>\underline{\boldsymbol{e}}</math>. | ||
- | {{#NAVCONTENT: | ||
- | Svar|Svar till övning 5| | ||
- | Tips 1|Tips 1 till övning 17.21| | ||
- | Tips 2|Tips 2 till övning 17.21| | ||
- | Tips 3|Tips 3 till övning 17.21| | ||
- | Lösning|Lösning till övning 17.21}} | ||
- | |||
- | |||
- | |||
=== Rotationer === | === Rotationer === | ||
- | |||
- | Läs textavsnittet om definition av matrisframställning för en linjär avbildning [[Bild:Kap16_11.pdf||center]] | ||
- | |||
- | '''Övningar''' | ||
- | |||
- | |||
- | 1. Låt <math>\underline{\boldsymbol{e}}</math> vara en höger ON-bas i rummet och <math>F</math> rotation <math>2\pi/3</math> i positiv led runt | ||
- | <math>\boldsymbol{e}_1+\boldsymbol{e}_2+\boldsymbol{e}_3</math>. | ||
- | Beräkna avbildningens matris i basen <math>\underline{\boldsymbol{e}}</math>. | ||
- | {{#NAVCONTENT: | ||
- | Svar|Svar till övning 5| | ||
- | Tips 1|Tips 1 till övning 17.21| | ||
- | Tips 2|Tips 2 till övning 17.21| | ||
- | Tips 3|Tips 3 till övning 17.21| | ||
- | Lösning|Lösning till övning 17.21}} |
Versionen från 15 augusti 2008 kl. 10.02
Innehåll |
Definition av linjär avbildning
Läs textavsnittet om definition av linjär avbildning Bild:Kap16 1.pdf
Du har nu läst definitionen på linjär avbildning och här kommer några övningar som testar om du har tagit till dig stoffet.
Övningar
1. Låt \displaystyle F och \displaystyle G vara avbildningar på rummet, som i basen \displaystyle \underline{\boldsymbol{e}} = \{\boldsymbol{e}_1, \boldsymbol{e}_2, \boldsymbol{e}_3\} ges av
Undersök om \displaystyle F är linjär. Skriv avbildningen som en matrisprodukt, \displaystyle Y=AX, där \displaystyle A inte beror på \displaystyle X. Bestäm också basvektorernas bilder och visa hur dessa kan avläsas ur \displaystyle A. Undersök om \displaystyle G är linjär.
2. Låt \displaystyle \boldsymbol{a} vara en fix vektor i rummet. Vilka av följande avbildningar på rummet är linjära?
3. Låt \displaystyle \{\boldsymbol{e}_1, \boldsymbol{e}_2\} vara en bas i \displaystyle {\bf R}^2. Avgör vilka av följande avbildningar är linjära.
- \displaystyle F_1(\boldsymbol{e}_1x_1+\boldsymbol{e}_2x_2)=x_2^2\boldsymbol{e}_1+x_2\boldsymbol{e}_2
- \displaystyle F_2(\underline{\boldsymbol{e}}X)=\underline{\boldsymbol{e}}\left(\begin{array}{c}{x_1+x_2}\\{x_1}\end{array}\right)
- \displaystyle F_3(\underline{\boldsymbol{e}}X)=\underline{\boldsymbol{e}}\left(\begin{array}{c}{x_1}\\{1}\end{array}\right)
4. Hej
5. Hej igen nu testar vi.
Matrisframställning
Läs textavsnittet om definition av matrisframställning för en linjär avbildning Bild:Kap16 2.pdf
1. Gör övning 17.22.
Bild:O linavb.pdf
Du ska nu testa rimligheten i svaret. Avbildningsmatrisen skriver Du i Maple enligt
> A:=matrix(2,2,[-13,11,-14,12]); Den första urbilden skriver Du som > u1:=matrix(2,1,[3,4]); Använd nu multiplikations kommandot för att bestämma första bilden > v1=multiply(A,u1);
Räknar Maple rätt?
Kontrollera nu den andra urbilden!
\displaystyle \begin{array}{l@{}c@{}r} z & = & a \\ f(x,y,z) & = & x + y + z\end{array}