Lösning till övning 3

SamverkanLinalgLIU

(Skillnad mellan versioner)
Hoppa till: navigering, sök
Rad 2: Rad 2:
Vi behöver summan
Vi behöver summan
<center><math>\boldsymbol{u}+\boldsymbol{v}=\underline{\boldsymbol{e}}\begin{pmatrix}{a_1}\\{b_1}\\{c_1}\end{pmatrix}+\underline{\boldsymbol{e}}\begin{pmatrix}{a_2}\\{b_2}\\{c_2}\end{pmatrix}=\underline{\boldsymbol{e}}\begin{pmatrix}{a_1+a_2}\\{b_1+b_2}\\{c_1+c_2}\end{pmatrix}</center></math>
<center><math>\boldsymbol{u}+\boldsymbol{v}=\underline{\boldsymbol{e}}\begin{pmatrix}{a_1}\\{b_1}\\{c_1}\end{pmatrix}+\underline{\boldsymbol{e}}\begin{pmatrix}{a_2}\\{b_2}\\{c_2}\end{pmatrix}=\underline{\boldsymbol{e}}\begin{pmatrix}{a_1+a_2}\\{b_1+b_2}\\{c_1+c_2}\end{pmatrix}</center></math>
- 
och
och
- 
<center><math>
<center><math>
\lambda\boldsymbol{u}=\lambda\underline{\boldsymbol{e}}\begin{pmatrix}{a_1}\\{b_1}\\{c_1}\end{pmatrix}=\underline{\boldsymbol{e}}\begin{pmatrix}{\lambda
\lambda\boldsymbol{u}=\lambda\underline{\boldsymbol{e}}\begin{pmatrix}{a_1}\\{b_1}\\{c_1}\end{pmatrix}=\underline{\boldsymbol{e}}\begin{pmatrix}{\lambda
Rad 10: Rad 8:
c_1}\end{pmatrix}.
c_1}\end{pmatrix}.
</center></math>
</center></math>
 +
 +
Avbildningen <math>G</math> är inte linjär, ty
 +
<center><math>1.\quad G(\boldsymbol{u}+\boldsymbol{v})\neq G(\boldsymbol{u})+G(\boldsymbol{v})\qquad\qquad 2.\quad G(\lambda\boldsymbol{u})\neq\lambda G(\boldsymbol{u}).</center></math>
 +
T.ex., följer att
 +
<center><math>G(\lambda\boldsymbol{u})=G\left(\underline{\boldsymbol{e}}\rvekt{\lambda a_1}{\lambda b_1}{\lambda c_1}\right)
 +
=\underline{\boldsymbol{e\begin{pmatrix}{\lambda a_1\cdot\lambda c_1}\\{\lambda^2b_1^2}\\{\lambda b_1+\lambda c_1}}\end{pmatrix}
 +
=\lambda\underline{\boldsymbol{e}}\begin{pmatrix}{\lambda a_1c_1}\\{\lambda b_1^2}\\{b_1+c_1}\end{pmatrix}\neq \lambda G(\boldsymbol{u}).</center></math>

Versionen från 14 augusti 2008 kl. 19.29

Låt \displaystyle \boldsymbol{u}=\underline{\boldsymbol{e}}X_1=\underline{\boldsymbol{e}}\begin{pmatrix}{a_1}\\{b_1}\\{c_1}\end{pmatrix} och \displaystyle \boldsymbol{v}=\underline{\boldsymbol{e}}X_2=\underline{\boldsymbol{e}}\begin{pmatrix}{a_2}\\{b_2}\\{c_2}\end{pmatrix}. Vi behöver summan

\displaystyle \boldsymbol{u}+\boldsymbol{v}=\underline{\boldsymbol{e}}\begin{pmatrix}{a_1}\\{b_1}\\{c_1}\end{pmatrix}+\underline{\boldsymbol{e}}\begin{pmatrix}{a_2}\\{b_2}\\{c_2}\end{pmatrix}=\underline{\boldsymbol{e}}\begin{pmatrix}{a_1+a_2}\\{b_1+b_2}\\{c_1+c_2}\end{pmatrix}

och <center>\displaystyle \lambda\boldsymbol{u}=\lambda\underline{\boldsymbol{e}}\begin{pmatrix}{a_1}\\{b_1}\\{c_1}\end{pmatrix}=\underline{\boldsymbol{e}}\begin{pmatrix}{\lambda a_1}\\{\lambda b_1}\\{\lambda c_1}\end{pmatrix}.

Avbildningen \displaystyle G är inte linjär, ty

<center>\displaystyle 1.\quad G(\boldsymbol{u}+\boldsymbol{v})\neq G(\boldsymbol{u})+G(\boldsymbol{v})\qquad\qquad 2.\quad G(\lambda\boldsymbol{u})\neq\lambda G(\boldsymbol{u}).

T.ex., följer att

    <center>\displaystyle G(\lambda\boldsymbol{u})=G\left(\underline{\boldsymbol{e}}\rvekt{\lambda a_1}{\lambda b_1}{\lambda c_1}\right)
                          =\underline{\boldsymbol{e\begin{pmatrix}{\lambda a_1\cdot\lambda c_1}\\{\lambda^2b_1^2}\\{\lambda b_1+\lambda c_1}}\end{pmatrix}
=\lambda\underline{\boldsymbol{e}}\begin{pmatrix}{\lambda a_1c_1}\\{\lambda b_1^2}\\{b_1+c_1}\end{pmatrix}\neq \lambda G(\boldsymbol{u}).