Lösning till övning 3
SamverkanLinalgLIU
(Skillnad mellan versioner)
Rad 4: | Rad 4: | ||
och | och | ||
<center><math>\lambda\boldsymbol{u}=\lambda\underline{\boldsymbol{e}}\begin{pmatrix}{a_1}\\{b_1}\\{c_1}\end{pmatrix}=\underline{\boldsymbol{e}}\begin{pmatrix}{\lambda a_1}\\{\lambda b_1}\\{\lambda c_1}\end{pmatrix}.</center></math> | <center><math>\lambda\boldsymbol{u}=\lambda\underline{\boldsymbol{e}}\begin{pmatrix}{a_1}\\{b_1}\\{c_1}\end{pmatrix}=\underline{\boldsymbol{e}}\begin{pmatrix}{\lambda a_1}\\{\lambda b_1}\\{\lambda c_1}\end{pmatrix}.</center></math> | ||
- | Avbildningen <math>G</math> är inte linjär, ty | ||
- | <center><math>1.\quad G(\boldsymbol{u}+\boldsymbol{v})\neq G(\boldsymbol{u})+G(\boldsymbol{v})\qquad\qquad 2.\quad G(\lambda\boldsymbol{u})\neq\lambda G(\boldsymbol{u}).</center></math> | ||
- | T.ex., följer av~(\ref{C445}) att | ||
- | <center><math>G(\lambda\boldsymbol{u})=G\left(\underline{\boldsymbol{e}}\rvekt{\lambda a_1}{\lambda b_1}{\lambda c_1}\right) | ||
- | =\underline{\boldsymbol{e}}\rvektc{\lambda a_1\cdot\lambda c_1}{\lambda^2b_1^2}{\lambda b_1+\lambda c_1} | ||
- | =\lambda\underline{\boldsymbol{e}}\begin{pmatrix}{\lambda a_1c_1}\\{\lambda b_1^2}\\{b_1+c_1}\end{pmatrix}\neq \lambda G(\boldsymbol{u}).</center></math> |
Versionen från 14 augusti 2008 kl. 19.05
Låt \displaystyle \boldsymbol{u}=\underline{\boldsymbol{e}}X_1=\underline{\boldsymbol{e}}\begin{pmatrix}{a_1}\\{b_1}\\{c_1}\end{pmatrix} och \displaystyle \boldsymbol{v}=\underline{\boldsymbol{e}}X_2=\underline{\boldsymbol{e}}\begin{pmatrix}{a_2}\\{b_2}\\{c_2}\end{pmatrix}. Vi behöver summan
och
<center>\displaystyle \lambda\boldsymbol{u}=\lambda\underline{\boldsymbol{e}}\begin{pmatrix}{a_1}\\{b_1}\\{c_1}\end{pmatrix}=\underline{\boldsymbol{e}}\begin{pmatrix}{\lambda a_1}\\{\lambda b_1}\\{\lambda c_1}\end{pmatrix}.