Lösning till övning 2
SamverkanLinalgLIU
(Skillnad mellan versioner)
Rad 1: | Rad 1: | ||
- | + | # Vi visar att <math>F_1</math> inte är linjär genom att visa att <math>F_1</math> inte är homogen. Om <math>\boldsymbol{u}=x_1\boldsymbol{e}_1+x_2\boldsymbol{e}_2</math>, så är | |
<math>\lambda\boldsymbol{u}=(\lambda x_1)\boldsymbol{e}_1+(\lambda x_2)\boldsymbol{e}_2</math>. Då gäller att | <math>\lambda\boldsymbol{u}=(\lambda x_1)\boldsymbol{e}_1+(\lambda x_2)\boldsymbol{e}_2</math>. Då gäller att | ||
<center><math>\begin{align} | <center><math>\begin{align} | ||
Rad 8: | Rad 8: | ||
- | + | # Låt | |
+ | |||
+ | |||
+ | # Låt |
Versionen från 14 augusti 2008 kl. 11.07
- Vi visar att \displaystyle F_1 inte är linjär genom att visa att \displaystyle F_1 inte är homogen. Om \displaystyle \boldsymbol{u}=x_1\boldsymbol{e}_1+x_2\boldsymbol{e}_2, så är
\displaystyle \lambda\boldsymbol{u}=(\lambda x_1)\boldsymbol{e}_1+(\lambda x_2)\boldsymbol{e}_2. Då gäller att
F_1(\lambda\boldsymbol{u})&=F_1(\lambda x_1\boldsymbol{e}_1+\lambda x_2\boldsymbol{e}_2x_2)=(\lambda x_2)^2\boldsymbol{e}_1+(\lambda x_2)\boldsymbol{e}_2\\ &=\lambda(\lambda x_2^2\boldsymbol{e}_1+x_2\boldsymbol{e}_2)\neq\lambda(x_2^2\boldsymbol{e}_1+x_2\boldsymbol{e}_2)=\lambda F_1(\boldsymbol{u}).\end{align}
Alltså är \displaystyle F_1(\lambda\boldsymbol{u})\neq\lambda F_1(\boldsymbol{u}). Man kan också visa att \displaystyle F_1 inte är additiv.
- Låt
- Låt