Slaskövning2

SamverkanLinalgLIU

(Skillnad mellan versioner)
Hoppa till: navigering, sök
Rad 41: Rad 41:
3.7
3.7
-
Bestäm vinkeln mellan vektorerna $\boldsymbol{u}$ och $\boldsymbol{v}$ då man vet att $\boldsymbol{u}+3\boldsymbol{v}$ är ortogonal mot $2\boldsymbol{u}-\boldsymbol{v}$ och
+
Bestäm vinkeln mellan vektorerna <math>\boldsymbol{u}</math> och <math>\boldsymbol{v}</math> då man vet att <math>\boldsymbol{u}+3\boldsymbol{v}</math> är ortogonal mot <math>2\boldsymbol{u}-\boldsymbol{v}</math> och
-
$\boldsymbol{u}+7\boldsymbol{v}$ är ortogonal mot $2\boldsymbol{u}+\boldsymbol{v}$.
+
<math>\boldsymbol{u}+7\boldsymbol{v}</math> är ortogonal mot <math>2\boldsymbol{u}+\boldsymbol{v}</math>.

Versionen från 6 mars 2010 kl. 18.46

Vi antar nedan att \displaystyle \underline{\boldsymbol{e}}=\{\boldsymbol{e}_1,\boldsymbol{e}_2 \} och \displaystyle \underline{\boldsymbol{e}}=\{\boldsymbol{e}_1,\boldsymbol{e}_2,\boldsymbol{e}_3\} är en bas (ON-bas där det krävs) för planet resp. rummet.


3.1 Vi vet att \displaystyle |\boldsymbol{u}|=3, \displaystyle |\boldsymbol{v}|=4 och \displaystyle |\boldsymbol{u-v}|=5. Beräkna \displaystyle \boldsymbol{u}\cdot\boldsymbol{v}.




3.2 För vilka värden på \displaystyle a är vektorerna \displaystyle \boldsymbol{u}=\underline{\boldsymbol{e}}\begin{pmatrix}a\\ -2\\1\end{pmatrix} och \displaystyle \boldsymbol{v}=\underline{\boldsymbol{e}}\begin{pmatrix}2a\\a\\-4\end{pmatrix} ortogonala?


3.3 Bestäm en enhetsvektor i \displaystyle yz-planet som är vinkelrät mot vektorn \displaystyle \boldsymbol{u}=\underline{\boldsymbol{e}}\begin{pmatrix}1\\2\\-1\end{pmatrix}.


3.4 Bestäm en vektor som bildar lika stora vinklar med vektorerna \displaystyle \boldsymbol{v}_1=\underline{\boldsymbol{e}}\begin{pmatrix}1\\1\\1\end{pmatrix}, \displaystyle \boldsymbol{v}_2=\underline{\boldsymbol{e}}\begin{pmatrix}1\\1\\0\end{pmatrix} och \displaystyle \boldsymbol{v}_3=\underline{\boldsymbol{e}}\begin{pmatrix}1\\0\\0\end{pmatrix}.


3.5 Antag att \displaystyle \boldsymbol{u}=\underline{\boldsymbol{e}}\begin{pmatrix}2\\-3\\6\end{pmatrix} och \displaystyle \boldsymbol{v}=\underline{\boldsymbol{e}}\begin{pmatrix}1\\2\\2\end{pmatrix}.

  1. Bestäm projektionen av \displaystyle \boldsymbol{u}\displaystyle \boldsymbol{v} samt dess längd, dvs \displaystyle \boldsymbol{u}_{\parallel\boldsymbol{v}} samt \displaystyle |\boldsymbol{u}_{\parallel\boldsymbol{v}}|.
  2. Bestäm \displaystyle \boldsymbol{v}_{\parallel\boldsymbol{u}} samt \displaystyle |\boldsymbol{v}_{\parallel\boldsymbol{u}}|.


3.6 Låt \displaystyle \boldsymbol{v}=\underline{\boldsymbol{e}}\begin{pmatrix}2\\2\\1\end{pmatrix}. Dela upp vektorn \displaystyle \boldsymbol{u}=\underline{\boldsymbol{e}}\begin{pmatrix}7\\-2\\3\end{pmatrix} som en summa

\displaystyle \boldsymbol{u}=\boldsymbol{u}_{\parallel\boldsymbol{v}}+\boldsymbol{u}_{\perp\boldsymbol{v}},

där \displaystyle \boldsymbol{u}_{\parallel\boldsymbol{v}} är parallell med vektorn \displaystyle \boldsymbol{v} och \displaystyle \boldsymbol{u}_{\perp\boldsymbol{v}} är ortogonal mot \displaystyle \boldsymbol{v}.

3.7 Bestäm vinkeln mellan vektorerna \displaystyle \boldsymbol{u} och \displaystyle \boldsymbol{v} då man vet att \displaystyle \boldsymbol{u}+3\boldsymbol{v} är ortogonal mot \displaystyle 2\boldsymbol{u}-\boldsymbol{v} och \displaystyle \boldsymbol{u}+7\boldsymbol{v} är ortogonal mot \displaystyle 2\boldsymbol{u}+\boldsymbol{v}.