Slaskövning2

SamverkanLinalgLIU

(Skillnad mellan versioner)
Hoppa till: navigering, sök
Rad 34: Rad 34:
# Bestäm projektionen av <math>\boldsymbol{u}</math> på <math>\boldsymbol{v}</math> samt dess längd, dvs <math>\boldsymbol{u}_{\parallel\boldsymbol{v}}</math> samt <math>|\boldsymbol{u}_{\parallel\boldsymbol{v}}|</math>.
# Bestäm projektionen av <math>\boldsymbol{u}</math> på <math>\boldsymbol{v}</math> samt dess längd, dvs <math>\boldsymbol{u}_{\parallel\boldsymbol{v}}</math> samt <math>|\boldsymbol{u}_{\parallel\boldsymbol{v}}|</math>.
# Bestäm <math>\boldsymbol{v}_{\parallel\boldsymbol{u}}</math> samt <math>|\boldsymbol{v}_{\parallel\boldsymbol{u}}|</math>.
# Bestäm <math>\boldsymbol{v}_{\parallel\boldsymbol{u}}</math> samt <math>|\boldsymbol{v}_{\parallel\boldsymbol{u}}|</math>.
 +
3.6
3.6
-
Låt math>\boldsymbol{v}=\underline{\boldsymbol{e}}\begin{pmatrix}2\\1\\1\end{pmatrix}</math>. Dela upp vektorn math>\boldsymbol{u}=\underline{\boldsymbol{e}}\begin{pmatrix}7\\-2\\3\end{pmatrix}</math>.
+
Låt <math>\boldsymbol{v}=\underline{\boldsymbol{e}}\begin{pmatrix}2\\1\\1\end{pmatrix}</math>. Dela upp vektorn math>\boldsymbol{u}=\underline{\boldsymbol{e}}\begin{pmatrix}7\\-2\\3\end{pmatrix}</math>.

Versionen från 6 mars 2010 kl. 18.32

Vi antar nedan att \displaystyle \underline{\boldsymbol{e}}=\{\boldsymbol{e}_1,\boldsymbol{e}_2 \} och \displaystyle \underline{\boldsymbol{e}}=\{\boldsymbol{e}_1,\boldsymbol{e}_2,\boldsymbol{e}_3\} är en bas för planet resp. rummet.


3.1 Vi vet att \displaystyle |\boldsymbol{u}|=3, \displaystyle |\boldsymbol{v}|=4 och \displaystyle |\boldsymbol{u-v}|=5. Beräkna \displaystyle \boldsymbol{u}\cdot\boldsymbol{v}.




3.2 För vilka värden på \displaystyle a är vektorerna \displaystyle \boldsymbol{u}=\underline{\boldsymbol{e}}\begin{pmatrix}a\\ -2\\1\end{pmatrix} och \displaystyle \boldsymbol{v}=\underline{\boldsymbol{e}}\begin{pmatrix}2a\\a\\-4\end{pmatrix} ortogonala?

Hej hopp

\displaystyle {\rm a)}\ F(\boldsymbol{u})=\boldsymbol{u}\times\boldsymbol{a}\qquad{\rm b)}\ F(\boldsymbol{u})=(\boldsymbol{u}|\boldsymbol{a})\boldsymbol{a}\qquad{\rm c)}\ F(\boldsymbol{u})=(\boldsymbol{u}|\boldsymbol{a})\boldsymbol{u}.


3.3 Bestäm en enhetsvektor i \displaystyle yz-planet som är vinkelrät mot vektorn \displaystyle \boldsymbol{u}=\underline{\boldsymbol{e}}\begin{pmatrix}1\\2\\-1\end{pmatrix}.


3.4 Bestäm en vektor som bildar lika stora vinklar med vektorerna \displaystyle \boldsymbol{v}_1=\underline{\boldsymbol{e}}\begin{pmatrix}1\\1\\1\end{pmatrix}, \displaystyle \boldsymbol{v}_2=\underline{\boldsymbol{e}}\begin{pmatrix}1\\1\\0\end{pmatrix} och \displaystyle \boldsymbol{v}_3=\underline{\boldsymbol{e}}\begin{pmatrix}1\\0\\0\end{pmatrix}.


3.5 Antag att \displaystyle \boldsymbol{u}=\underline{\boldsymbol{e}}\begin{pmatrix}2\\-3\\6\end{pmatrix} och \displaystyle \boldsymbol{v}=\underline{\boldsymbol{e}}\begin{pmatrix}1\\2\\2\end{pmatrix}.

  1. Bestäm projektionen av \displaystyle \boldsymbol{u}\displaystyle \boldsymbol{v} samt dess längd, dvs \displaystyle \boldsymbol{u}_{\parallel\boldsymbol{v}} samt \displaystyle |\boldsymbol{u}_{\parallel\boldsymbol{v}}|.
  2. Bestäm \displaystyle \boldsymbol{v}_{\parallel\boldsymbol{u}} samt \displaystyle |\boldsymbol{v}_{\parallel\boldsymbol{u}}|.


3.6 Låt \displaystyle \boldsymbol{v}=\underline{\boldsymbol{e}}\begin{pmatrix}2\\1\\1\end{pmatrix}. Dela upp vektorn math>\boldsymbol{u}=\underline{\boldsymbol{e}}\begin{pmatrix}7\\-2\\3\end{pmatrix}</math>.