Slask dugga 5
SamverkanLinalgLIU
Rad 18: | Rad 18: | ||
Svar: <math>k=-1</math> | Svar: <math>k=-1</math> | ||
+ | |||
+ | |||
+ | 2b. En linjär avbildning <math>F:{\bf R^3}\rightarrow{\bf R}^3</math> har i basen <math>\underline{\boldsymbol{e}}=\{\boldsymbol{e}_1, \boldsymbol{e}_2,\boldsymbol{e}_3\}</math> matrisen | ||
+ | <center><math> A=\left(\begin{array}{rrr}2&1&2\\1&k&-2\\2&-2&-1\end{array}\right).</math></center> | ||
+ | Bestäm konstanten <math>k</math> så att <math>\lambda=-3</math> blir ett egenvärde till <math>F</math>. | ||
+ | |||
+ | Svar: <math>k=2</math> |
Versionen från 29 november 2009 kl. 11.02
1a. En linjär avbildning \displaystyle F:{\bf R^3}\rightarrow{\bf R}^3 har i basen \displaystyle \underline{\boldsymbol{e}}=\{\boldsymbol{e}_1, \boldsymbol{e}_2,\boldsymbol{e}_3\} matrisen
Bestäm konstanten \displaystyle k så att \displaystyle 2\boldsymbol{e}_1-2\boldsymbol{e}_2+\boldsymbol{e}_3 blir en egenvektor till \displaystyle F.
Svar: \displaystyle k=13
1b. En linjär avbildning \displaystyle F:{\bf R^3}\rightarrow{\bf R}^3 har i basen \displaystyle \underline{\boldsymbol{e}}=\{\boldsymbol{e}_1, \boldsymbol{e}_2,\boldsymbol{e}_3\} matrisen
Bestäm konstanten \displaystyle k så att \displaystyle \boldsymbol{e}_1+2\boldsymbol{e}_2+2\boldsymbol{e}_3 blir en egenvektor till \displaystyle F.
Svar: \displaystyle k=25
2a. En linjär avbildning \displaystyle F:{\bf R^3}\rightarrow{\bf R}^3 har i basen \displaystyle \underline{\boldsymbol{e}}=\{\boldsymbol{e}_1, \boldsymbol{e}_2,\boldsymbol{e}_3\} matrisen
Bestäm konstanten \displaystyle k så att \displaystyle \lambda=-3 blir ett egenvärde till \displaystyle F.
Svar: \displaystyle k=-1
2b. En linjär avbildning \displaystyle F:{\bf R^3}\rightarrow{\bf R}^3 har i basen \displaystyle \underline{\boldsymbol{e}}=\{\boldsymbol{e}_1, \boldsymbol{e}_2,\boldsymbol{e}_3\} matrisen
Bestäm konstanten \displaystyle k så att \displaystyle \lambda=-3 blir ett egenvärde till \displaystyle F.
Svar: \displaystyle k=2