Förklaring 2.2:3

Förberedande kurs i matematik 1

Version från den 21 april 2010 kl. 10.21; Tek (Diskussion | bidrag)
(skillnad) ← Äldre version | Nuvarande version (skillnad) | Nyare version → (skillnad)
Hoppa till: navigering, sök

Förenklingen går till som så att båda led i ekvationen multipliceras med \displaystyle x(x-1)(x+1),

\displaystyle \frac{x(x-1)(x+1)}{\strut x}+\frac{x(x-1)(x+1)}{\strut x-1}-\frac{x(x-1)(x+1)}{\strut x+1}=0.

Så långt inga problem. När sedan bråkuttrycken förenklas till

\displaystyle (x-1)(x+1)+x(x+1)-x(x-1)=0

så görs det under det outtalade antagandet att \displaystyle x\not=0, \displaystyle x+1\not=0 och \displaystyle x-1\not=0. Skulle den nya ekvationen visa sig ha någon av rötterna \displaystyle x=0, \displaystyle x=-1 eller \displaystyle x=1 så är de inte lösningar till den ursprungliga ekvationen.

Det går alltså inte att göra förenklingen i frågetexten utan risk för att förändra ekvationens lösningar.