Svar 5.1:3
Förberedande kurs i matematik 1
(Skillnad mellan versioner)
(Ny sida: {| width="100%" cellspacing="10px" |a) |width="100%" | \dfrac{x+1}{x^2-1} = \dfrac{1}{x-1} |- |b) |width="100%" | \left(\dfrac{5}{x}-1\right)(1-x) |- |c) |width="100%" | \dfrac{\frac{1}{2}}...) |
(\dfrac --> \displaystyle\frac) |
||
Rad 1: | Rad 1: | ||
{| width="100%" cellspacing="10px" | {| width="100%" cellspacing="10px" | ||
|a) | |a) | ||
- | |width="100%" | \ | + | |width="100%" | \displaystyle\frac{x+1}{x^2-1} = \displaystyle\frac{1}{x-1} |
|- | |- | ||
|b) | |b) | ||
- | |width="100%" | \left(\ | + | |width="100%" | \left(\displaystyle\frac{5}{x}-1\right)(1-x) |
|- | |- | ||
|c) | |c) | ||
- | |width="100%" | \ | + | |width="100%" | \displaystyle\frac{\frac{1}{2}}{\frac{1}{3}+\frac{1}{4}} |
|- | |- | ||
|d) | |d) | ||
- | |width="100%" | \ | + | |width="100%" | \displaystyle\frac{1}{1+\displaystyle\frac{1}{1+x}} |
|} | |} |
Nuvarande version
a) | \displaystyle\frac{x+1}{x^2-1} = \displaystyle\frac{1}{x-1} |
b) | \left(\displaystyle\frac{5}{x}-1\right)(1-x) |
c) | \displaystyle\frac{\frac{1}{2}}{\frac{1}{3}+\frac{1}{4}} |
d) | \displaystyle\frac{1}{1+\displaystyle\frac{1}{1+x}} |