Svar 5.1:6
Förberedande kurs i matematik 1
(Skillnad mellan versioner)
(Ny sida: {| width="100%" cellspacing="10px" |a) |width="100%" | \ln(4\times 3)=\ln 4+\ln 3 |- |b) |width="100%" | \ln(4-3)\ne \ln 4-\ln 3 |- |c) |width="100%" | \log_{2}4 = \dfrac{\ln 4}{\ln 2} |- |...) |
(\dfrac --> \displaystyle\frac) |
||
(En mellanliggande version visas inte.) | |||
Rad 1: | Rad 1: | ||
{| width="100%" cellspacing="10px" | {| width="100%" cellspacing="10px" | ||
|a) | |a) | ||
- | |width="100%" | \ln(4\ | + | |width="100%" | \ln(4\cdot 3)=\ln 4+\ln 3 |
|- | |- | ||
|b) | |b) | ||
Rad 7: | Rad 7: | ||
|- | |- | ||
|c) | |c) | ||
- | |width="100%" | \log_{2}4 = \ | + | |width="100%" | \log_{2}4 = \displaystyle\frac{\ln 4}{\ln 2} |
|- | |- | ||
|d) | |d) | ||
|width="100%" | 2^{\log_{2}4} = 4 | |width="100%" | 2^{\log_{2}4} = 4 | ||
|} | |} |
Nuvarande version
a) | \ln(4\cdot 3)=\ln 4+\ln 3 |
b) | \ln(4-3)\ne \ln 4-\ln 3 |
c) | \log_{2}4 = \displaystyle\frac{\ln 4}{\ln 2} |
d) | 2^{\log_{2}4} = 4 |