Svar 5.1:6

Förberedande kurs i matematik 1

(Skillnad mellan versioner)
Hoppa till: navigering, sök
(Ny sida: {| width="100%" cellspacing="10px" |a) |width="100%" | \ln(4\times 3)=\ln 4+\ln 3 |- |b) |width="100%" | \ln(4-3)\ne \ln 4-\ln 3 |- |c) |width="100%" | \log_{2}4 = \dfrac{\ln 4}{\ln 2} |- |...)
Nuvarande version (3 juli 2009 kl. 13.30) (redigera) (ogör)
(\dfrac --> \displaystyle\frac)
 
(En mellanliggande version visas inte.)
Rad 1: Rad 1:
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
-
|width="100%" | \ln(4\times 3)=\ln 4+\ln 3
+
|width="100%" | \ln(4\cdot 3)=\ln 4+\ln 3
|-
|-
|b)
|b)
Rad 7: Rad 7:
|-
|-
|c)
|c)
-
|width="100%" | \log_{2}4 = \dfrac{\ln 4}{\ln 2}
+
|width="100%" | \log_{2}4 = \displaystyle\frac{\ln 4}{\ln 2}
|-
|-
|d)
|d)
|width="100%" | 2^{\log_{2}4} = 4
|width="100%" | 2^{\log_{2}4} = 4
|}
|}

Nuvarande version

a) \ln(4\cdot 3)=\ln 4+\ln 3
b) \ln(4-3)\ne \ln 4-\ln 3
c) \log_{2}4 = \displaystyle\frac{\ln 4}{\ln 2}
d) 2^{\log_{2}4} = 4