4. Forces and Vectors

Förberedande Mekanik

(Skillnad mellan versioner)
Hoppa till: navigering, sök
(New page: 4. Forces and Vectors Key Points <math>\begin{align} & \mathbf{F}=F\cos \alpha \mathbf{i}+F\cos (90-\alpha )\mathbf{j} \\ & =F\cos \alpha \mathbf{i}+F\sin \alpha \mathbf{j} \end{al...)
Rad 1: Rad 1:
-
4. Forces and Vectors
 
- 
-
Key Points
 
- 
- 
- 
- 
<math>\begin{align}
<math>\begin{align}
& \mathbf{F}=F\cos \alpha \mathbf{i}+F\cos (90-\alpha )\mathbf{j} \\
& \mathbf{F}=F\cos \alpha \mathbf{i}+F\cos (90-\alpha )\mathbf{j} \\
Rad 30: Rad 23:
is called the vertical component of the force.
is called the vertical component of the force.
-
 
+
'''[[Example 4.1]]'''
-
 
+
-
Example 4.1
+
Express each of the forces given below in the form ai + bj.
Express each of the forces given below in the form ai + bj.
Rad 40: Rad 31:
-
 
+
'''Solution'''
-
Solution
+
(a)
(a)
Rad 55: Rad 45:
Note the negative sign here in the first term.
Note the negative sign here in the first term.
-
Example 4.2
+
'''[[Example 4.2]]'''
Express the force shown below as a vector in terms of i and j.
Express the force shown below as a vector in terms of i and j.
Rad 63: Rad 53:
-
Solution
+
'''Solution'''
Rad 71: Rad 61:
Note the negative sign in the second term.
Note the negative sign in the second term.
-
Example 4.3
+
'''[[Example 4.3]]'''
Rad 77: Rad 67:
-
Solution
+
'''Solution'''
Rad 85: Rad 75:
Note that here both terms are negative.
Note that here both terms are negative.
-
Example 4.4
+
'''[[Example 4.4]]'''
Find the magnitude of the force (4i - 8j) N. Draw a diagram to show the direction of this force.
Find the magnitude of the force (4i - 8j) N. Draw a diagram to show the direction of this force.
-
Solution
+
'''Solution'''
The magnitude, FN , of the force is given by,
The magnitude, FN , of the force is given by,
Rad 96: Rad 86:
-
The angle, , is given by,
+
The angle, <math>\theta </math>, is given by,
<math>\theta ={{\tan }^{-1}}\left( \frac{8}{4} \right)=63.4{}^\circ </math>
<math>\theta ={{\tan }^{-1}}\left( \frac{8}{4} \right)=63.4{}^\circ </math>
-
Example 4.5
+
'''[[Example 4.5]]'''
Find the magnitude and direction of the resultant of the four forces shown in the diagram.
Find the magnitude and direction of the resultant of the four forces shown in the diagram.
Rad 108: Rad 98:
-
Solution
+
'''Solution'''
Force Vector Form
Force Vector Form
Rad 138: Rad 128:
-
The angle can be found using tan.
+
The angle <math>\theta </math> can be found using tan.

Versionen från 18 mars 2009 kl. 15.48

\displaystyle \begin{align} & \mathbf{F}=F\cos \alpha \mathbf{i}+F\cos (90-\alpha )\mathbf{j} \\ & =F\cos \alpha \mathbf{i}+F\sin \alpha \mathbf{j} \end{align}





\displaystyle F\cos \alpha is one component of the force. If i is horizontal, \displaystyle F\cos \alpha is called the horizontal component of the force.


\displaystyle F\sin \alpha is another component of the force. If j is vertical, \displaystyle F\sin \alpha is called the vertical component of the force.

Example 4.1

Express each of the forces given below in the form ai + bj.



Solution

(a)

\displaystyle 20\cos 40{}^\circ \mathbf{i}+20\sin 40{}^\circ \mathbf{j}


(b)

\displaystyle -80\cos 30{}^\circ \mathbf{i}+80\sin 30{}^\circ \mathbf{j}


Note the negative sign here in the first term.

Example 4.2

Express the force shown below as a vector in terms of i and j.



Solution


\displaystyle 28\cos 30{}^\circ \mathbf{i}-28\sin 30{}^\circ \mathbf{j}


Note the negative sign in the second term.

Example 4.3



Solution


\displaystyle -50\cos 44{}^\circ \mathbf{i}-50\sin 44{}^\circ \mathbf{j}


Note that here both terms are negative.

Example 4.4

Find the magnitude of the force (4i - 8j) N. Draw a diagram to show the direction of this force.

Solution

The magnitude, FN , of the force is given by,

\displaystyle F=\sqrt{{{4}^{2}}+{{8}^{2}}}=\sqrt{80}=8.94\text{ N (to 3sf)}


The angle, \displaystyle \theta , is given by,

\displaystyle \theta ={{\tan }^{-1}}\left( \frac{8}{4} \right)=63.4{}^\circ


Example 4.5

Find the magnitude and direction of the resultant of the four forces shown in the diagram.



Solution

Force Vector Form 20 N \displaystyle 20\cos 50{}^\circ \mathbf{i}+20\sin 50{}^\circ \mathbf{j}

18 N \displaystyle -18\mathbf{j}

25 N \displaystyle -25\cos 20{}^\circ \mathbf{i}-25\sin 20{}^\circ \mathbf{j}

15 N \displaystyle -15\cos 30{}^\circ \mathbf{i}+15\sin 30{}^\circ \mathbf{j}


\displaystyle \begin{align} & \text{Resultant Force }=\text{ }\left( 20\cos 50{}^\circ -25\cos 20{}^\circ -15\cos 30{}^\circ \right)\mathbf{i}+\left( 20\sin 50{}^\circ -18-25\sin 20{}^\circ +15\sin 30{}^\circ \right)\mathbf{j} \\ & =-23.627\mathbf{i}-3.730\mathbf{j} \end{align}


The magnitude is given by:


\displaystyle \sqrt{{{23.627}^{2}}+{{3.730}^{2}}}=23.9\text{ N (to 3sf)}


The angle \displaystyle \theta can be found using tan.


\displaystyle \begin{align} & \tan \theta =\frac{3.730}{23.627} \\ & \theta =9.0{}^\circ \end{align}