14. Moment och jämvikt

Förberedande Mekanik

(Skillnad mellan versioner)
Hoppa till: navigering, sök
Rad 38: Rad 38:
<math>\begin{align}
<math>\begin{align}
& 5\times {{T}_{2}}=3\times 588 \\
& 5\times {{T}_{2}}=3\times 588 \\
-
& {{T}_{2}}=\frac{3\times 588}{5}=352.8=353\text{ N (to 3sf)} \\
+
& {{T}_{2}}=\frac{3\times 588}{5}=352\textrm{.}8=353\text{ N (to 3sf)} \\
\end{align}</math>
\end{align}</math>
Rad 47: Rad 47:
<math>\begin{align}
<math>\begin{align}
& 5\times {{T}_{1}}=2\times 588 \\
& 5\times {{T}_{1}}=2\times 588 \\
-
& {{T}_{1}}=\frac{2\times 588}{5}=235.2=235\text{ N (to 3sf)} \\
+
& {{T}_{1}}=\frac{2\times 588}{5}=235\textrm{.}2=235\text{ N (to 3sf)} \\
\end{align}</math>
\end{align}</math>
Rad 55: Rad 55:
,which can be used to check the tensions. In is the case we have:
,which can be used to check the tensions. In is the case we have:
-
<math>352.8+235.2=588</math>
+
<math>352\textrm{.}8+235\textrm{.}2=588</math>
Rad 79: Rad 79:
<math>\begin{align}
<math>\begin{align}
-
& 2\times {{R}_{2}}=1.5\times 490 \\
+
& 2\times {{R}_{2}}=1\textrm{.}5\times 490 \\
-
& {{R}_{2}}=\frac{1.5\times 490}{2}=367.5=368\text{ N (to 3sf)} \\
+
& {{R}_{2}}=\frac{1\textrm{.}5\times 490}{2}=367\textrm{.}5=368\text{ N (to 3sf)} \\
\end{align}</math>
\end{align}</math>
Rad 88: Rad 88:
<math>\begin{align}
<math>\begin{align}
-
& 2\times {{R}_{1}}=0.5\times 490 \\
+
& 2\times {{R}_{1}}=0\textrm{.}5\times 490 \\
-
& {{R}_{1}}=\frac{0.5\times 490}{2}=122.5=123\text{ N (to 3sf)} \\
+
& {{R}_{1}}=\frac{0\textrm{.}5\times 490}{2}=122\textrm{.}5=123\text{ N (to 3sf)} \\
\end{align}</math>
\end{align}</math>
Rad 97: Rad 97:
, which can be used to check the tensions. In is the case we have:
, which can be used to check the tensions. In is the case we have:
-
<math>367.5+122.5=490</math>
+
<math>367\textrm{.}5+122\textrm{.}5=490</math>
Rad 110: Rad 110:
<math>\begin{align}
<math>\begin{align}
-
& 1\times mg=1.5\times 490 \\
+
& 1\times mg=1\textrm{.}5\times 490 \\
-
& m=\frac{1.5\times 490}{9.8}=75\text{ kg} \\
+
& m=\frac{1\textrm{.}5\times 490}{9\textrm{.}8}=75\text{ kg} \\
\end{align}</math>
\end{align}</math>
Rad 120: Rad 120:
<math>\begin{align}
<math>\begin{align}
-
& 2\times mg=0.5\times 490 \\
+
& 2\times mg=0\textrm{.}5\times 490 \\
-
& m=\frac{0.5\times 490}{2g}=12.5\text{ kg} \\
+
& m=\frac{0\textrm{.}5\times 490}{2g}=12\textrm{.}5\text{ kg} \\
\end{align}</math>
\end{align}</math>
Rad 131: Rad 131:
'''[[Example 14.3]]'''
'''[[Example 14.3]]'''
-
A ladder, of length 3 m and mass 20 kg, leans against a smooth, vertical wall so that the angle between the horizontal ground and the ladder is 60.
+
A ladder, of length 3 m and mass 20 kg, leans against a smooth, vertical wall so that the angle between the horizontal ground and the ladder is 60<math>{}^\circ </math>.
(a) Find the magnitude of the friction and normal reaction forces that act on the ladder, if it is in equilibrium.
(a) Find the magnitude of the friction and normal reaction forces that act on the ladder, if it is in equilibrium.
(b) Find the minimum value of the coefficient of friction between the ladder and the ground.
(b) Find the minimum value of the coefficient of friction between the ladder and the ground.
Rad 159: Rad 159:
<math>\begin{align}
<math>\begin{align}
-
& 196\times 1.5\cos 60{}^\circ =S\times 3\sin 60{}^\circ \\
+
& 196\times 1\textrm{.}5\cos 60{}^\circ =S\times 3\sin 60{}^\circ \\
-
& S=\frac{196\times 1.5\cos 60{}^\circ }{3\sin 60{}^\circ }=\frac{196\times \cos 60{}^\circ }{2\sin 60{}^\circ }=\frac{196}{2\tan 60{}^\circ }=56.6\text{ N (to 3 sf)} \\
+
& S=\frac{196\times 1\textrm{.}5\cos 60{}^\circ }{3\sin 60{}^\circ }=\frac{196\times \cos 60{}^\circ }{2\sin 60{}^\circ }=\frac{196}{2\tan 60{}^\circ }=56\textrm{.}6\text{ N (to 3 sf)} \\
\end{align}</math>
\end{align}</math>
Rad 167: Rad 167:
<math>F=S</math>
<math>F=S</math>
-
, the friction force has magnitude 56.6 N.
+
, the friction force has magnitude 56\textrm{.}6 N.
(b)
(b)
Rad 181: Rad 181:
& \frac{196}{2\tan 60{}^\circ }\le \mu \times 196 \\
& \frac{196}{2\tan 60{}^\circ }\le \mu \times 196 \\
& \mu \ge \frac{1}{2\tan 60{}^\circ } \\
& \mu \ge \frac{1}{2\tan 60{}^\circ } \\
-
& \mu \ge 0.289\text{ (to 3sf)} \\
+
& \mu \ge 0\textrm{.}289\text{ (to 3sf)} \\
\end{align}</math>
\end{align}</math>

Versionen från 23 september 2009 kl. 19.02

       Theory          Exercises      


Key Points

In equilibrium:

• The resultant force on a body must be zero.

And

• The resultant moment on a body must be zero.


Example 14.1

A uniform beam has length 8 m and mass 60 kg. It is suspended by two ropes, as shown in the diagram below.

Image:E14.1fig1.GIF

Find the tension in each rope.


Solution

The diagram shows the forces acting on the beam.

Image:E14.1fig2.GIF

Take moments about the point where T1 acts to give:

\displaystyle \begin{align} & 5\times {{T}_{2}}=3\times 588 \\ & {{T}_{2}}=\frac{3\times 588}{5}=352\textrm{.}8=353\text{ N (to 3sf)} \\ \end{align}


Take moments about the point where T2 acts to give:


\displaystyle \begin{align} & 5\times {{T}_{1}}=2\times 588 \\ & {{T}_{1}}=\frac{2\times 588}{5}=235\textrm{.}2=235\text{ N (to 3sf)} \\ \end{align}


Finally for vertical equilibrium we require \displaystyle {{T}_{1}}+{{T}_{2}}=588 ,which can be used to check the tensions. In is the case we have:

\displaystyle 352\textrm{.}8+235\textrm{.}2=588



Example 14.2

A beam, of mass 50 kg and length 5 m, rests on two supports as shown in the diagram. Find the magnitude of the reaction force exerted by each support.

Image:E14.2fig1.GIF

Find the maximum mass that could be placed at either end of the beam if it is to remain in equilibrium.


Solution

The diagram shows the forces acting on the beam.

Image:E14.2fig2.GIF

Taking moments about the point where R1 acts gives:


\displaystyle \begin{align} & 2\times {{R}_{2}}=1\textrm{.}5\times 490 \\ & {{R}_{2}}=\frac{1\textrm{.}5\times 490}{2}=367\textrm{.}5=368\text{ N (to 3sf)} \\ \end{align}


Taking moments about the point where R2 acts gives:


\displaystyle \begin{align} & 2\times {{R}_{1}}=0\textrm{.}5\times 490 \\ & {{R}_{1}}=\frac{0\textrm{.}5\times 490}{2}=122\textrm{.}5=123\text{ N (to 3sf)} \\ \end{align}


For vertical equilibrium we require \displaystyle {{R}_{1}}+{{R}_{2}}=490 , which can be used to check the tensions. In is the case we have:

\displaystyle 367\textrm{.}5+122\textrm{.}5=490


First consider the greatest mass that can be placed at the left hand end of the beam. The diagram below shows the extra force that must now be considered. When the maximum possible mass is used, \displaystyle {{R}_{2}}=0 .

Image:E14.2fig3.GIF

Taking moments about the point where R1 acts gives:


\displaystyle \begin{align} & 1\times mg=1\textrm{.}5\times 490 \\ & m=\frac{1\textrm{.}5\times 490}{9\textrm{.}8}=75\text{ kg} \\ \end{align}


Similarly for a mass placed at the right hand end of the beam:

Image:E14.2fig4.GIF

\displaystyle \begin{align} & 2\times mg=0\textrm{.}5\times 490 \\ & m=\frac{0\textrm{.}5\times 490}{2g}=12\textrm{.}5\text{ kg} \\ \end{align}


Hence the greatest mass that can be placed at either end of the beam is 12.5 kg.


Example 14.3

A ladder, of length 3 m and mass 20 kg, leans against a smooth, vertical wall so that the angle between the horizontal ground and the ladder is 60\displaystyle {}^\circ . (a) Find the magnitude of the friction and normal reaction forces that act on the ladder, if it is in equilibrium. (b) Find the minimum value of the coefficient of friction between the ladder and the ground.


Solution

The diagram shows the forces acting on the ladder

Image:E14.3fig1.GIF

(a) Considering the horizontal forces gives:


\displaystyle F=S


Considering the vertical forces gives:


\displaystyle R=196


Taking moment about the base of the ladder gives:


\displaystyle \begin{align} & 196\times 1\textrm{.}5\cos 60{}^\circ =S\times 3\sin 60{}^\circ \\ & S=\frac{196\times 1\textrm{.}5\cos 60{}^\circ }{3\sin 60{}^\circ }=\frac{196\times \cos 60{}^\circ }{2\sin 60{}^\circ }=\frac{196}{2\tan 60{}^\circ }=56\textrm{.}6\text{ N (to 3 sf)} \\ \end{align}


But since

\displaystyle F=S , the friction force has magnitude 56\textrm{.}6 N.

(b)

Using the friction inequality,

\displaystyle F\le \mu R gives:


\displaystyle \begin{align} & \frac{196}{2\tan 60{}^\circ }\le \mu \times 196 \\ & \mu \ge \frac{1}{2\tan 60{}^\circ } \\ & \mu \ge 0\textrm{.}289\text{ (to 3sf)} \\ \end{align}