19. Variable acceleration II
Förberedande Mekanik
(5 mellanliggande versioner visas inte.) | |||
Rad 7: | Rad 7: | ||
|} | |} | ||
- | Key Points | + | == '''Key Points''' == |
{| width="100%" cellspacing="10px" align="center" | {| width="100%" cellspacing="10px" align="center" | ||
|align="left"| <math>\begin{align} | |align="left"| <math>\begin{align} | ||
- | & v=\ | + | & v=\int{a}dt \\ |
- | & | + | & s=\int{v}dt \\ |
\end{align}</math> | \end{align}</math> | ||
| valign="top"|<math>\begin{align} | | valign="top"|<math>\begin{align} | ||
- | + | & \mathbf{v}=\int{\mathbf{a}}dt \\ | |
- | & \mathbf{v}=\ | + | & \mathbf{r}=\int{\mathbf{v}}dt \\ |
- | & \mathbf{ | + | |
\end{align}</math> | \end{align}</math> | ||
|} | |} | ||
- | |||
- | |||
- | <math>\begin{align} | ||
- | & v=\int{a}dt \\ | ||
- | & s=\int{v}dt \\ | ||
- | \end{align}</math> | ||
- | |||
- | <math>\begin{align} | ||
- | & \mathbf{v}=\int{\mathbf{a}}dt \\ | ||
- | & \mathbf{r}=\int{\mathbf{v}}dt \\ | ||
- | \end{align}</math> | ||
Don't forget to evaluate constants of integration. | Don't forget to evaluate constants of integration. | ||
- | |||
Rad 43: | Rad 30: | ||
The acceleration, | The acceleration, | ||
<math>a</math> | <math>a</math> | ||
- | + | , of a particle, at time | |
<math>t</math> | <math>t</math> | ||
- | + | seconds is given by: | |
<math>a=4-\frac{t}{20}</math> | <math>a=4-\frac{t}{20}</math> | ||
Rad 59: | Rad 46: | ||
First integrate the acceleration to obtain the velocity. | First integrate the acceleration to obtain the velocity. | ||
- | + | ||
- | + | <math>v=\int{\left( 4-\frac{t}{20} \right)}dt=4t-\frac{{{t}^{\ 2}}}{40}+{{c}_{1}}</math> | |
- | <math>v=\int{\left( 4-\frac{t}{20} \right)}dt=4t-\frac{{{t}^{2}}}{40}+{{c}_{1}}</math> | + | |
- | + | ||
To find the value of the constant | To find the value of the constant | ||
Rad 74: | Rad 59: | ||
Hence the velocity is: | Hence the velocity is: | ||
- | + | <math>v=4t-\frac{{{t}^{\ 2}}}{40} \text{ m}{{\text{s}}^{\text{-1}}}</math> | |
- | <math>v=4t-\frac{{{t}^{2}}}{40}</math> | + | |
- | + | ||
- | + | ||
The displacement of the particle can be found by integrating the velocity: | The displacement of the particle can be found by integrating the velocity: | ||
- | + | ||
- | + | <math>s=\int{\left( 4t-\frac{{{t}^{\ 2}}}{40} \right)}dt=2{{t}^{\ 2}}-\frac{{{t}^{\ 3}}}{120}+{{c}_{2}}</math> | |
- | <math>s=\int{\left( 4t-\frac{{{t}^{2}}}{40} \right)}dt=2{{t}^{2}}-\frac{{{t}^{3}}}{120}+{{c}_{2}}</math> | + | |
- | + | ||
To find the constant | To find the constant | ||
Rad 96: | Rad 76: | ||
<math>t</math> | <math>t</math> | ||
is given by: | is given by: | ||
- | + | ||
- | + | <math>s=2{{t}^{\ 2}}-\frac{{{t}^{\ 3}}}{120}\text{ m}</math> | |
- | <math>s=2{{t}^{2}}-\frac{{{t}^{3}}}{120}</math> | + | |
- | + | ||
To find the distance travelled substitute | To find the distance travelled substitute | ||
Rad 109: | Rad 87: | ||
'''[[Example 19.2]]''' | '''[[Example 19.2]]''' | ||
- | A boat has an initial velocity of 0. | + | A boat has an initial velocity of <math>0\textrm{.}5\mathbf{j} \text{ m}{{\text{s}}^{-1}}</math> and experiences an acceleration of |
<math>\left( \frac{3}{10}\mathbf{i}+\left( \frac{t}{50} \right)\mathbf{j} \right)</math> | <math>\left( \frac{3}{10}\mathbf{i}+\left( \frac{t}{50} \right)\mathbf{j} \right)</math> | ||
<math>\text{m}{{\text{s}}^{-2}}</math>, at time | <math>\text{m}{{\text{s}}^{-2}}</math>, at time | ||
Rad 116: | Rad 94: | ||
a) Find the velocity of the boat at time | a) Find the velocity of the boat at time | ||
- | <math>t</math> | + | <math>t</math>. |
- | . | + | |
b) Find the distance of the boat from the origin when | b) Find the distance of the boat from the origin when | ||
- | <math>t=\text{ 12}0</math> | + | <math>t=\text{ 12}0</math>. |
- | . | + | |
'''Solution''' | '''Solution''' | ||
a) Integrate the acceleration to obtain the velocity: | a) Integrate the acceleration to obtain the velocity: | ||
- | |||
<math>\begin{align} | <math>\begin{align} | ||
- | & \mathbf{v}=\int{\frac{3}{10}dt\mathbf{i}+\int{\left( \frac{t}{50} \right)dt\mathbf{j}}} \\ | + | & \mathbf{v}=\int{\frac{3}{10}dt\ \mathbf{i}+\int{\left( \frac{t}{50} \right)dt\ \mathbf{j}}} \\ |
- | & =\left( \frac{3}{10}t+{{c}_{1}} \right)\mathbf{i}+\left( \frac{{{t}^{2}}}{100}+{{c}_{2}} \right)\mathbf{j} | + | & =\left( \frac{3}{10}t+{{c}_{1}} \right)\mathbf{i}+\left( \frac{{{t}^{\ 2}}}{100}+{{c}_{2}} \right)\mathbf{j} |
\end{align}</math> | \end{align}</math> | ||
- | |||
When | When | ||
<math>t=0</math>, | <math>t=0</math>, | ||
- | <math>\mathbf{v}=0.5\mathbf{j}</math>. | + | <math>\mathbf{v}=0\textrm{.}5\mathbf{j}</math>. |
These values can be substituted to give | These values can be substituted to give | ||
<math>{{c}_{1}}=0</math> | <math>{{c}_{1}}=0</math> | ||
and | and | ||
- | <math>{{c}_{2}}=0.5</math>, | + | <math>{{c}_{2}}=0\textrm{.}5</math>, |
so that the velocity is given by: | so that the velocity is given by: | ||
- | |||
- | <math>\mathbf{v}=\left( \frac{3}{10}t \right)\mathbf{i}+\left( \frac{{{t}^{2}}}{100}+0.5 \right)\mathbf{j}</math> | + | <math>\mathbf{v}=\left( \frac{3}{10}t \right)\mathbf{i}+\left( \frac{{{t}^{\ 2}}}{100}+0\textrm{.}5 \right)\mathbf{j} \text{ m}{{\text{s}}^{\text{-1}}}</math> |
- | + | ||
b) Integrating the velocity gives the position vector: | b) Integrating the velocity gives the position vector: | ||
- | |||
<math>\begin{align} | <math>\begin{align} | ||
- | & \mathbf{r}=\int{\left( \frac{3}{10}t \right)dt}\mathbf{i}+\int{\left( \frac{{{t}^{2}}}{100}+0.5 \right)}dt\mathbf{j} \\ | + | & \mathbf{r}=\int{\left( \frac{3}{10}t \right)dt}\ \mathbf{i}+\int{\left( \frac{{{t}^{\ 2}}}{100}+0\textrm{.}5 \right)}dt\ \mathbf{j} \\ |
- | & =\left( \frac{3{{t}^{2}}}{20}+{{c}_{3}} \right)\mathbf{i}+\left( \frac{{{t}^{3}}}{300}+0.5t+{{c}_{4}} \right)\mathbf{j} | + | & =\left( \frac{3{{t}^{\ 2}}}{20}+{{c}_{3}} \right)\mathbf{i}+\left( \frac{{{t}^{\ 3}}}{300}+0\textrm{.}5t+{{c}_{4}} \right)\mathbf{j} |
\end{align}</math> | \end{align}</math> | ||
- | |||
The boat is initially at the origin, so when | The boat is initially at the origin, so when | ||
Rad 166: | Rad 136: | ||
<math>{{c}_{4}}=0</math>. | <math>{{c}_{4}}=0</math>. | ||
Hence the position vector is: | Hence the position vector is: | ||
- | |||
- | <math>\mathbf{r}=\left( \frac{3{{t}^{2}}}{20} \right)\mathbf{i}+\left( \frac{{{t}^{3}}}{300}+0.5t \right)\mathbf{j}</math> | + | <math>\mathbf{r}=\left( \frac{3{{t}^{\ 2}}}{20} \right)\mathbf{i}+\left( \frac{{{t}^{\ 3}}}{300}+0\textrm{.}5t \right)\mathbf{j}</math> |
- | + | ||
Substituting | Substituting | ||
<math>t=\text{12}0</math> | <math>t=\text{12}0</math> | ||
, gives the required position vector. | , gives the required position vector. | ||
- | |||
- | <math>\mathbf{r}=\left( \frac{3\times {{120}^{2}}}{20} \right)\mathbf{i}+\left( \frac{{{120}^{3}}}{300}+0.5\times 120 \right)\mathbf{j}=2160\mathbf{i}+5820\mathbf{j}</math> | + | <math>\mathbf{r}=\left( \frac{3\times {{120}^{\ 2}}}{20} \right)\mathbf{i}+\left( \frac{{{120}^{3}}}{300}+0\textrm{.}5\times 120 \right)\mathbf{j}=2160\mathbf{i}+5820\mathbf{j}</math> |
The distance from the origin can now be calculated, by finding the magnitude of the position vector. | The distance from the origin can now be calculated, by finding the magnitude of the position vector. | ||
- | |||
<math>s=\sqrt{{{2160}^{2}}+{{5820}^{2}}}=6210\text{ m (to 3sf)}</math> | <math>s=\sqrt{{{2160}^{2}}+{{5820}^{2}}}=6210\text{ m (to 3sf)}</math> | ||
Rad 189: | Rad 155: | ||
<math>t</math> | <math>t</math> | ||
seconds the resultant force on a particle, of mass 250 kg is | seconds the resultant force on a particle, of mass 250 kg is | ||
- | <math>\left( 300t\mathbf{i}-400t\mathbf{j} \right)</math> | + | <math>\left( 300t\ \mathbf{i}-400t\ \mathbf{j} \right)</math>N. Initially the particle is at the origin and is moving with velocity (2<math>\mathbf{i}</math> - 3<math>\mathbf{j}</math>) <math>\text{m}{{\text{s}}^{-1}}</math>. |
- | N. Initially the particle is at the origin and is moving with velocity (2<math>\mathbf{i}</math> - 3<math>\mathbf{j}</math>) | + | |
a) Find the acceleration at time | a) Find the acceleration at time | ||
- | <math>t</math> | + | <math>t</math>. |
- | . | + | |
b) Find the velocity of the particle at time | b) Find the velocity of the particle at time | ||
- | <math>t</math> | + | <math>t</math>. |
- | . | + | |
c) Find the position vector of the particle at time | c) Find the position vector of the particle at time | ||
Rad 208: | Rad 171: | ||
<math>\mathbf{F}=m\mathbf{a}</math>, | <math>\mathbf{F}=m\mathbf{a}</math>, | ||
gives: | gives: | ||
- | |||
<math>\begin{align} | <math>\begin{align} | ||
- | & 300t\mathbf{i}-400t\mathbf{j}=250\mathbf{a} \\ | + | & 300t\ \mathbf{i}-400t\ \mathbf{j}=250\mathbf{a} \\ |
- | & \mathbf{a}=\frac{6}{5}t\mathbf{i}-\frac{8}{5}t\mathbf{j} \\ | + | & \mathbf{a}=\frac{6}{5}t\ \mathbf{i}-\frac{8}{5}t\ \mathbf{j} \text{ m}{{\text{s}}^{\text{-2}}} \\ |
\end{align}</math> | \end{align}</math> | ||
- | |||
b) Integrating the acceleration gives the velocity: | b) Integrating the acceleration gives the velocity: | ||
- | |||
<math>\begin{align} | <math>\begin{align} | ||
- | & \mathbf{v}=\int{\left( \frac{6}{5}t \right)dt\mathbf{i}+\int{\left( -\frac{8}{5}t \right)dt\mathbf{j}}} \\ | + | & \mathbf{v}=\int{\left( \frac{6}{5}t \right)dt\ \mathbf{i}+\int{\left( -\frac{8}{5}t \right)dt\ \mathbf{j}}} \\ |
- | & =\left( \frac{3}{5}{{t}^{2}}+{{c}_{1}} \right)\mathbf{i}+\left( -\frac{4{{t}^{2}}}{5}+{{c}_{2}} \right)\mathbf{j} | + | & =\left( \frac{3}{5}{{t}^{\ 2}}+{{c}_{1}} \right)\mathbf{i}+\left( -\frac{4{{t}^{\ 2}}}{5}+{{c}_{2}} \right)\mathbf{j} |
\end{align}</math> | \end{align}</math> | ||
- | |||
As the initial velocity is | As the initial velocity is | ||
Rad 233: | Rad 192: | ||
and | and | ||
<math>{{c}_{2}}=-3</math>. | <math>{{c}_{2}}=-3</math>. | ||
- | Hence the velocity is given by | + | Hence the velocity is given by |
- | + | ||
- | <math>\mathbf{v}=\left( \frac{3}{5}{{t}^{2}}+2 \right)\mathbf{i}+\left( -\frac{4{{t}^{2}}}{5}-3 \right)\mathbf{j}</math> | + | <math>\mathbf{v}=\left( \frac{3}{5}{{t}^{\ 2}}+2 \right)\mathbf{i}+\left( -\frac{4{{t}^{\ 2}}}{5}-3 \right)\mathbf{j} \text{ m}{{\text{s}}^{\text{-1}}}</math> |
- | + | ||
c) Integrating the velocity gives the position vector: | c) Integrating the velocity gives the position vector: | ||
- | |||
<math>\begin{align} | <math>\begin{align} | ||
- | & \mathbf{r}=\int{\left( \frac{3}{5}{{t}^{2}}+2 \right)}dt\mathbf{i}+\int{\left( -\frac{4{{t}^{2}}}{5}-3 \right)}dt\mathbf{j} \\ | + | & \mathbf{r}=\int{\left( \frac{3}{5}{{t}^{\ 2}}+2 \right)}dt\ \mathbf{i}+\int{\left( -\frac{4{{t}^{\ 2}}}{5}-3 \right)}dt\ \mathbf{j} \\ |
- | & =\left( \frac{{{t}^{3}}}{5}+2t+{{c}_{3}} \right)\mathbf{i}+\left( -\frac{4{{t}^{3}}}{15}-3t+{{c}_{4}} \right)\mathbf{j} | + | & =\left( \frac{{{t}^{\ 3}}}{5}+2t+{{c}_{3}} \right)\mathbf{i}+\left( -\frac{4{{t}^{\ 3}}}{15}-3t+{{c}_{4}} \right)\mathbf{j} |
\end{align}</math> | \end{align}</math> | ||
- | |||
Note that the particle is initially at the origin. So using | Note that the particle is initially at the origin. So using | ||
Rad 257: | Rad 212: | ||
<math>{{c}_{4}}=0</math>. | <math>{{c}_{4}}=0</math>. | ||
Hence the position vector is given by: | Hence the position vector is given by: | ||
- | |||
- | <math>\mathbf{r}=\left( \frac{{{t}^{3}}}{5}+2t \right)\mathbf{i}+\left( -\frac{4{{t}^{3}}}{15}-3t \right)\mathbf{j}</math> | + | <math>\mathbf{r}=\left( \frac{{{t}^{\ 3}}}{5}+2t \right)\mathbf{i}+\left( -\frac{4{{t}^{\ 3}}}{15}-3t \right)\mathbf{j} \text{ m}</math> |
Nuvarande version
Theory | Exercises |
Key Points
\displaystyle \begin{align}
& v=\int{a}dt \\ & s=\int{v}dt \\ \end{align} | \displaystyle \begin{align}
& \mathbf{v}=\int{\mathbf{a}}dt \\ & \mathbf{r}=\int{\mathbf{v}}dt \\ \end{align} |
Don't forget to evaluate constants of integration.
The acceleration, \displaystyle a , of a particle, at time \displaystyle t seconds is given by:
\displaystyle a=4-\frac{t}{20} \displaystyle \text{m}{{\text{s}}^{-2}}.
This model is valid for \displaystyle 0\le t\le 80. Given that the particle starts at rest, find the distance travelled by the particle when \displaystyle t=\text{ 8}0 .
Solution
First integrate the acceleration to obtain the velocity.
\displaystyle v=\int{\left( 4-\frac{t}{20} \right)}dt=4t-\frac{{{t}^{\ 2}}}{40}+{{c}_{1}}
To find the value of the constant \displaystyle {{c}_{1}} , note that the particle is initially at rest, so that \displaystyle v=0 when \displaystyle t=0. Substituting these values shows that \displaystyle {{c}_{1}}=0. Hence the velocity is:
\displaystyle v=4t-\frac{{{t}^{\ 2}}}{40} \text{ m}{{\text{s}}^{\text{-1}}}
The displacement of the particle can be found by integrating the velocity:
\displaystyle s=\int{\left( 4t-\frac{{{t}^{\ 2}}}{40} \right)}dt=2{{t}^{\ 2}}-\frac{{{t}^{\ 3}}}{120}+{{c}_{2}}
To find the constant \displaystyle {{c}_{2}} , assume that the particle starts at the origin, so that \displaystyle s=0 when \displaystyle t=0. Hence \displaystyle {{c}_{2}}=0 and the displacement at time \displaystyle t is given by:
\displaystyle s=2{{t}^{\ 2}}-\frac{{{t}^{\ 3}}}{120}\text{ m}
To find the distance travelled substitute \displaystyle t=80.
\displaystyle s=2\times {{80}^{2}}-\frac{{{80}^{3}}}{120}=8530\text{ m (to 3sf)}
A boat has an initial velocity of \displaystyle 0\textrm{.}5\mathbf{j} \text{ m}{{\text{s}}^{-1}} and experiences an acceleration of \displaystyle \left( \frac{3}{10}\mathbf{i}+\left( \frac{t}{50} \right)\mathbf{j} \right) \displaystyle \text{m}{{\text{s}}^{-2}}, at time \displaystyle t seconds. Assume that the boat is initially at the origin. The unit vector \displaystyle \mathbf{i} and \displaystyle \mathbf{j} are directed east and north respectively.
a) Find the velocity of the boat at time \displaystyle t.
b) Find the distance of the boat from the origin when \displaystyle t=\text{ 12}0.
Solution
a) Integrate the acceleration to obtain the velocity:
\displaystyle \begin{align} & \mathbf{v}=\int{\frac{3}{10}dt\ \mathbf{i}+\int{\left( \frac{t}{50} \right)dt\ \mathbf{j}}} \\ & =\left( \frac{3}{10}t+{{c}_{1}} \right)\mathbf{i}+\left( \frac{{{t}^{\ 2}}}{100}+{{c}_{2}} \right)\mathbf{j} \end{align}
When \displaystyle t=0,
\displaystyle \mathbf{v}=0\textrm{.}5\mathbf{j}. These values can be substituted to give \displaystyle {{c}_{1}}=0 and \displaystyle {{c}_{2}}=0\textrm{.}5, so that the velocity is given by:
\displaystyle \mathbf{v}=\left( \frac{3}{10}t \right)\mathbf{i}+\left( \frac{{{t}^{\ 2}}}{100}+0\textrm{.}5 \right)\mathbf{j} \text{ m}{{\text{s}}^{\text{-1}}}
b) Integrating the velocity gives the position vector:
\displaystyle \begin{align} & \mathbf{r}=\int{\left( \frac{3}{10}t \right)dt}\ \mathbf{i}+\int{\left( \frac{{{t}^{\ 2}}}{100}+0\textrm{.}5 \right)}dt\ \mathbf{j} \\ & =\left( \frac{3{{t}^{\ 2}}}{20}+{{c}_{3}} \right)\mathbf{i}+\left( \frac{{{t}^{\ 3}}}{300}+0\textrm{.}5t+{{c}_{4}} \right)\mathbf{j} \end{align}
The boat is initially at the origin, so when \displaystyle t=0, the boat has position vector \displaystyle 0\mathbf{i}+0\mathbf{j}. Substituting these values gives \displaystyle {{c}_{3}}=0 and \displaystyle {{c}_{4}}=0. Hence the position vector is:
\displaystyle \mathbf{r}=\left( \frac{3{{t}^{\ 2}}}{20} \right)\mathbf{i}+\left( \frac{{{t}^{\ 3}}}{300}+0\textrm{.}5t \right)\mathbf{j}
Substituting \displaystyle t=\text{12}0 , gives the required position vector.
\displaystyle \mathbf{r}=\left( \frac{3\times {{120}^{\ 2}}}{20} \right)\mathbf{i}+\left( \frac{{{120}^{3}}}{300}+0\textrm{.}5\times 120 \right)\mathbf{j}=2160\mathbf{i}+5820\mathbf{j}
The distance from the origin can now be calculated, by finding the magnitude of the position vector.
\displaystyle s=\sqrt{{{2160}^{2}}+{{5820}^{2}}}=6210\text{ m (to 3sf)}
At time \displaystyle t seconds the resultant force on a particle, of mass 250 kg is \displaystyle \left( 300t\ \mathbf{i}-400t\ \mathbf{j} \right)N. Initially the particle is at the origin and is moving with velocity (2\displaystyle \mathbf{i} - 3\displaystyle \mathbf{j}) \displaystyle \text{m}{{\text{s}}^{-1}}.
a) Find the acceleration at time \displaystyle t.
b) Find the velocity of the particle at time \displaystyle t.
c) Find the position vector of the particle at time \displaystyle t.
Solution
a) Using Newton’s second Law, \displaystyle \mathbf{F}=m\mathbf{a}, gives:
\displaystyle \begin{align} & 300t\ \mathbf{i}-400t\ \mathbf{j}=250\mathbf{a} \\ & \mathbf{a}=\frac{6}{5}t\ \mathbf{i}-\frac{8}{5}t\ \mathbf{j} \text{ m}{{\text{s}}^{\text{-2}}} \\ \end{align}
b) Integrating the acceleration gives the velocity:
\displaystyle \begin{align} & \mathbf{v}=\int{\left( \frac{6}{5}t \right)dt\ \mathbf{i}+\int{\left( -\frac{8}{5}t \right)dt\ \mathbf{j}}} \\ & =\left( \frac{3}{5}{{t}^{\ 2}}+{{c}_{1}} \right)\mathbf{i}+\left( -\frac{4{{t}^{\ 2}}}{5}+{{c}_{2}} \right)\mathbf{j} \end{align}
As the initial velocity is \displaystyle 2\mathbf{i}-3\mathbf{j}, this can be used with \displaystyle t=0, to show that \displaystyle {{c}_{1}}=2 and \displaystyle {{c}_{2}}=-3. Hence the velocity is given by
\displaystyle \mathbf{v}=\left( \frac{3}{5}{{t}^{\ 2}}+2 \right)\mathbf{i}+\left( -\frac{4{{t}^{\ 2}}}{5}-3 \right)\mathbf{j} \text{ m}{{\text{s}}^{\text{-1}}}
c) Integrating the velocity gives the position vector:
\displaystyle \begin{align} & \mathbf{r}=\int{\left( \frac{3}{5}{{t}^{\ 2}}+2 \right)}dt\ \mathbf{i}+\int{\left( -\frac{4{{t}^{\ 2}}}{5}-3 \right)}dt\ \mathbf{j} \\ & =\left( \frac{{{t}^{\ 3}}}{5}+2t+{{c}_{3}} \right)\mathbf{i}+\left( -\frac{4{{t}^{\ 3}}}{15}-3t+{{c}_{4}} \right)\mathbf{j} \end{align}
Note that the particle is initially at the origin. So using \displaystyle \mathbf{r}=0\mathbf{i}+0\mathbf{j} when \displaystyle t=0, gives \displaystyle {{c}_{3}}=0 and \displaystyle {{c}_{4}}=0. Hence the position vector is given by:
\displaystyle \mathbf{r}=\left( \frac{{{t}^{\ 3}}}{5}+2t \right)\mathbf{i}+\left( -\frac{4{{t}^{\ 3}}}{15}-3t \right)\mathbf{j} \text{ m}