17. Energins bevarande

Förberedande Mekanik

(Skillnad mellan versioner)
Hoppa till: navigering, sök
Nuvarande version (1 mars 2010 kl. 14.12) (redigera) (ogör)
 
(En mellanliggande version visas inte.)
Rad 8: Rad 8:
-
Key Results
+
== '''Key Points''' ==
-
Kinetic Energy
+
Kinetic Energy:
-
<math>\frac{1}{2}m{{v}^{2}}</math>
+
<math>\ \frac{1}{2}m{{v}^{2}}</math>
-
 
+
Potential Energy <math>\ mgh</math>
-
Potential Energy mgh
+
Energy lost due to friction = Work Done Against Friction
Energy lost due to friction = Work Done Against Friction
Rad 23: Rad 22:
A ball, of mass 300 grams, is hit from ground level, so that its initial speed is 16 <math>\text{m}{{\text{s}}^{-1}}</math>. At its maximum height the ball travels at 6 <math>\text{m}{{\text{s}}^{-1}}</math>.
A ball, of mass 300 grams, is hit from ground level, so that its initial speed is 16 <math>\text{m}{{\text{s}}^{-1}}</math>. At its maximum height the ball travels at 6 <math>\text{m}{{\text{s}}^{-1}}</math>.
-
(a) Find the maximum and minimum kinetic energy of the ball.
+
a) Find the maximum and minimum kinetic energy of the ball.
-
(b) If the ball had been projected vertically upwards what would be the minimum kinetic energy of the ball?
+
b) If the ball had been projected vertically upwards what would be the minimum kinetic energy of the ball?
'''Solution'''
'''Solution'''
-
(a)
+
a)
The kinetic energy is at a maximum when the velocity is 16 <math>\text{m}{{\text{s}}^{-1}}</math>.
The kinetic energy is at a maximum when the velocity is 16 <math>\text{m}{{\text{s}}^{-1}}</math>.
-
 
<math>\text{KE}=\frac{1}{2}\times 0\textrm{.}3\times {{16}^{2}}=38\textrm{.}4\text{ J}</math>
<math>\text{KE}=\frac{1}{2}\times 0\textrm{.}3\times {{16}^{2}}=38\textrm{.}4\text{ J}</math>
- 
The kinetic energy is at a minimum when the velocity is 6 <math>\text{m}{{\text{s}}^{-1}}</math>.
The kinetic energy is at a minimum when the velocity is 6 <math>\text{m}{{\text{s}}^{-1}}</math>.
- 
<math>\text{KE}=\frac{1}{2}\times 0\textrm{.}3\times {{6}^{2}}=5\textrm{.}4\text{ J}</math>
<math>\text{KE}=\frac{1}{2}\times 0\textrm{.}3\times {{6}^{2}}=5\textrm{.}4\text{ J}</math>
-
 
+
b) If the ball was projected vertically, it would have a velocity of zero at its maximum height and hence the minimum kinetic energy would be zero.
-
(b) If the ball was projected vertically, it would have a velocity of zero at its maximum height and hence the minimum kinetic energy would be zero.
+
Rad 53: Rad 48:
Find the kinetic energy before the bounce:
Find the kinetic energy before the bounce:
- 
<math>\text{KE}=\frac{1}{2}\times 0\textrm{.}02\times {{4}^{2}}=0\textrm{.}16\text{ J}</math>
<math>\text{KE}=\frac{1}{2}\times 0\textrm{.}02\times {{4}^{2}}=0\textrm{.}16\text{ J}</math>
- 
Find the kinetic energy after the bounce:
Find the kinetic energy after the bounce:
-
 
+
-
+
<math>\text{KE}=\frac{1}{2}\times 0\textrm{.}02\times {{3}^{2}}=0\textrm{.}09\text{ J}</math>
<math>\text{KE}=\frac{1}{2}\times 0\textrm{.}02\times {{3}^{2}}=0\textrm{.}09\text{ J}</math>
- 
The loss of energy can then be calculated:
The loss of energy can then be calculated:
- 
<math>\begin{align}
<math>\begin{align}
Rad 71: Rad 61:
& =0\textrm{.}07\text{ J}
& =0\textrm{.}07\text{ J}
\end{align}</math>
\end{align}</math>
- 
Rad 78: Rad 67:
A roller coaster has carriages which are modelled as particles of mass
A roller coaster has carriages which are modelled as particles of mass
500 kg. A carriage starts at A with speed 12 <math>\text{m}{{\text{s}}^{-1}}</math>. It moves, as shown in the diagram, through the points B, C and D. Find the kinetic energy and speed of the carriage at each of these points.
500 kg. A carriage starts at A with speed 12 <math>\text{m}{{\text{s}}^{-1}}</math>. It moves, as shown in the diagram, through the points B, C and D. Find the kinetic energy and speed of the carriage at each of these points.
- 
- 
[[Image:E17.3.GIF]]
[[Image:E17.3.GIF]]
- 
- 
- 
'''Solution'''
'''Solution'''
Rad 90: Rad 74:
Find the total energy of the carriage at A.
Find the total energy of the carriage at A.
-
 
<math>\begin{align}
<math>\begin{align}
& \text{Total Energy}=mgh+\frac{1}{2}m{{v}^{2}} \\
& \text{Total Energy}=mgh+\frac{1}{2}m{{v}^{2}} \\
Rad 97: Rad 80:
& =40900\text{ J}
& =40900\text{ J}
\end{align}</math>
\end{align}</math>
- 
At the point B:
At the point B:
-
 
<math>\begin{align}
<math>\begin{align}
& 40900=500\times 9\textrm{.}8\times 5+\text{KE} \\
& 40900=500\times 9\textrm{.}8\times 5+\text{KE} \\
& \text{KE}=\text{4090}0-\text{24500}=16400\text{ J} \\
& \text{KE}=\text{4090}0-\text{24500}=16400\text{ J} \\
\end{align}</math>
\end{align}</math>
- 
- 
<math>\begin{align}
<math>\begin{align}
Rad 113: Rad 92:
& v=\sqrt{\frac{16400}{250}}=8\textrm{.}1\text{ m}{{\text{s}}^{\text{-1}}} \\
& v=\sqrt{\frac{16400}{250}}=8\textrm{.}1\text{ m}{{\text{s}}^{\text{-1}}} \\
\end{align}</math>
\end{align}</math>
- 
At the point C there is no potential energy, so the kinetic energy is 40900 J. The speed can then be calculated.
At the point C there is no potential energy, so the kinetic energy is 40900 J. The speed can then be calculated.
- 
<math>\begin{align}
<math>\begin{align}
Rad 122: Rad 99:
& v=\sqrt{\frac{40900}{250}}=12\textrm{.}8\text{ m}{{\text{s}}^{\text{-1}}} \\
& v=\sqrt{\frac{40900}{250}}=12\textrm{.}8\text{ m}{{\text{s}}^{\text{-1}}} \\
\end{align}</math>
\end{align}</math>
- 
At the point D:
At the point D:
- 
<math>\begin{align}
<math>\begin{align}
Rad 131: Rad 106:
& \text{KE}=\text{4090}0-\text{14700}=26200\text{ J} \\
& \text{KE}=\text{4090}0-\text{14700}=26200\text{ J} \\
\end{align}</math>
\end{align}</math>
- 
- 
<math>\begin{align}
<math>\begin{align}
Rad 143: Rad 116:
A bungee jumper has mass 60 kg and uses a rope of length 40m. The jumper comes to rest after falling a distance of 60 m.
A bungee jumper has mass 60 kg and uses a rope of length 40m. The jumper comes to rest after falling a distance of 60 m.
-
(a) Find the speed of the jumper when the rope first becomes taut.
 
-
(b) Find the elastic potential energy stored in the rope, when it is fully stretched.
 
-
'''Solution'''
+
a) Find the speed of the jumper when the rope first becomes taut.
-
(a) When the rope becomes taut the bungee jumper has fallen 40 m. The potential energy lost will be equal to the kinetic energy.
+
b) Find the elastic potential energy stored in the rope, when it is fully stretched.
 +
'''Solution'''
 +
 +
a) When the rope becomes taut the bungee jumper has fallen 40 m. The potential energy lost will be equal to the kinetic energy.
<math>\begin{align}
<math>\begin{align}
Rad 156: Rad 130:
\end{align}</math>
\end{align}</math>
-
 
+
b) At the lowest point all of the potential energy lost will be equal to the elastic potential energy.
-
(b) At the lowest point all of the potential energy lost will be equal to the elastic potential energy.
+
<math>\text{EPE }=60\times 9\textrm{.}8\times 60=35280\text{ J}</math>
<math>\text{EPE }=60\times 9\textrm{.}8\times 60=35280\text{ J}</math>

Nuvarande version

       Theory          Exercises      


Key Points

Kinetic Energy: \displaystyle \ \frac{1}{2}m{{v}^{2}}

Potential Energy \displaystyle \ mgh

Energy lost due to friction = Work Done Against Friction


Example 17.1

A ball, of mass 300 grams, is hit from ground level, so that its initial speed is 16 \displaystyle \text{m}{{\text{s}}^{-1}}. At its maximum height the ball travels at 6 \displaystyle \text{m}{{\text{s}}^{-1}}.

a) Find the maximum and minimum kinetic energy of the ball.

b) If the ball had been projected vertically upwards what would be the minimum kinetic energy of the ball?

Solution

a) The kinetic energy is at a maximum when the velocity is 16 \displaystyle \text{m}{{\text{s}}^{-1}}.

\displaystyle \text{KE}=\frac{1}{2}\times 0\textrm{.}3\times {{16}^{2}}=38\textrm{.}4\text{ J}

The kinetic energy is at a minimum when the velocity is 6 \displaystyle \text{m}{{\text{s}}^{-1}}.

\displaystyle \text{KE}=\frac{1}{2}\times 0\textrm{.}3\times {{6}^{2}}=5\textrm{.}4\text{ J}

b) If the ball was projected vertically, it would have a velocity of zero at its maximum height and hence the minimum kinetic energy would be zero.


Example 17.2

A ball, of mass 20 grams, hits a wall travelling at 4 \displaystyle \text{m}{{\text{s}}^{-1}} and rebounds at 3 \displaystyle \text{m}{{\text{s}}^{-1}}. Find the energy lost during the bounce.

Solution

Find the kinetic energy before the bounce:

\displaystyle \text{KE}=\frac{1}{2}\times 0\textrm{.}02\times {{4}^{2}}=0\textrm{.}16\text{ J}

Find the kinetic energy after the bounce:

\displaystyle \text{KE}=\frac{1}{2}\times 0\textrm{.}02\times {{3}^{2}}=0\textrm{.}09\text{ J}

The loss of energy can then be calculated:

\displaystyle \begin{align} & \text{Energy Lost }=0\textrm{.}16-0\textrm{.}09 \\ & =0\textrm{.}07\text{ J} \end{align}


Example 17.3

A roller coaster has carriages which are modelled as particles of mass 500 kg. A carriage starts at A with speed 12 \displaystyle \text{m}{{\text{s}}^{-1}}. It moves, as shown in the diagram, through the points B, C and D. Find the kinetic energy and speed of the carriage at each of these points.

Image:E17.3.GIF

Solution

Find the total energy of the carriage at A.

\displaystyle \begin{align} & \text{Total Energy}=mgh+\frac{1}{2}m{{v}^{2}} \\ & =500\times 9\textrm{.}8\times 1+\frac{1}{2}\times 500\times {{12}^{2}} \\ & =4900+36000 \\ & =40900\text{ J} \end{align}

At the point B:

\displaystyle \begin{align} & 40900=500\times 9\textrm{.}8\times 5+\text{KE} \\ & \text{KE}=\text{4090}0-\text{24500}=16400\text{ J} \\ \end{align}

\displaystyle \begin{align} & 16400=\frac{1}{2}\times 500{{v}^{2}} \\ & v=\sqrt{\frac{16400}{250}}=8\textrm{.}1\text{ m}{{\text{s}}^{\text{-1}}} \\ \end{align}

At the point C there is no potential energy, so the kinetic energy is 40900 J. The speed can then be calculated.

\displaystyle \begin{align} & 40900=\frac{1}{2}\times 500{{v}^{2}} \\ & v=\sqrt{\frac{40900}{250}}=12\textrm{.}8\text{ m}{{\text{s}}^{\text{-1}}} \\ \end{align}

At the point D:

\displaystyle \begin{align} & 40900=500\times 9\textrm{.}8\times 3+\text{KE} \\ & \text{KE}=\text{4090}0-\text{14700}=26200\text{ J} \\ \end{align}

\displaystyle \begin{align} & 26200=\frac{1}{2}\times 500{{v}^{2}} \\ & v=\sqrt{\frac{26200}{250}}=10\textrm{.}2\text{ m}{{\text{s}}^{\text{-1}}} \\ \end{align}


Example 17.4

A bungee jumper has mass 60 kg and uses a rope of length 40m. The jumper comes to rest after falling a distance of 60 m.

a) Find the speed of the jumper when the rope first becomes taut.

b) Find the elastic potential energy stored in the rope, when it is fully stretched.

Solution

a) When the rope becomes taut the bungee jumper has fallen 40 m. The potential energy lost will be equal to the kinetic energy.

\displaystyle \begin{align} & 60\times 9\textrm{.}8\times 40=\frac{1}{2}\times 60{{v}^{2}} \\ & v=\sqrt{\frac{23520}{30}}=28\text{ m}{{\text{s}}^{\text{-1}}} \\ \end{align}

b) At the lowest point all of the potential energy lost will be equal to the elastic potential energy.

\displaystyle \text{EPE }=60\times 9\textrm{.}8\times 60=35280\text{ J}